
NIST Consensus Builder
User’s Manual

Amanda Koepke, Thomas Lafarge,
Antonio Possolo, Blaza Toman
Statistical Engineering Division

Information Technology Laboratory

November 12, 2020



Contents

1 Introduction 4

2 Quick Start 6
2.1 Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 General Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Method Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Method-Speci�c Inputs . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Orientation 16
3.1 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Illustration and Overview of Methods . . . . . . . . . . . . . . . 22

4 Examples 37
4.1 Carotid Artery Stenosis . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Length of Gauge Blocks . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Triple point of water . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Activity of Radionuclide 60Co . . . . . . . . . . . . . . . . . . . 48
4.5 Radiofrequency Power Sensor . . . . . . . . . . . . . . . . . . . 49
4.6 Lead in Lead-Free Solder . . . . . . . . . . . . . . . . . . . . . . 55

5 Advisory 58

6 Implementation 62

A Appendix: Statistical Procedures 63
A.1 Random versus Fixed E�ects . . . . . . . . . . . . . . . . . . . . 64
A.2 DerSimonian-Laird . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.3 Hierarchical Bayesian . . . . . . . . . . . . . . . . . . . . . . . . 68
A.4 Linear Pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.5 Degrees of Equivalence . . . . . . . . . . . . . . . . . . . . . . . 71

nicob 2020 nov 12 2 / 85



Exhibits

1 nicob User Interface . . . . . . . . . . . . . . . . . . . . . . . . 7
2 nicob User Interface — Con�guration File . . . . . . . . . . . . 8
3 nicob User Interface — DerSimonian-Laird . . . . . . . . . . . . 15
4 nicob User Interface — Hierarchical Bayes . . . . . . . . . . . . 16
5 nicob User Interface — Linear Pool . . . . . . . . . . . . . . . . 17
6 PCB 28 — Data and Results . . . . . . . . . . . . . . . . . . . . . 23
7 PCB 28 — Numerical Results . . . . . . . . . . . . . . . . . . . . 24
8 PCB 28 — Bayesian Consensus Value . . . . . . . . . . . . . . . 32
9 PCB 28 — Linear Pool . . . . . . . . . . . . . . . . . . . . . . . . 35
10 PCB 28 — Unilateral Degrees of Equivalence . . . . . . . . . . . 38
11 Carotid Artery Stenosis — Data . . . . . . . . . . . . . . . . . . 40
12 Carotid Artery Stenosis — 2 × 2 table . . . . . . . . . . . . . . . 41
13 Carotid Artery Stenosis — Results . . . . . . . . . . . . . . . . . 42
14 Gauge Blocks — Data . . . . . . . . . . . . . . . . . . . . . . . . 43
15 Gauge Blocks — Results . . . . . . . . . . . . . . . . . . . . . . . 44
16 Triple point of water — Data . . . . . . . . . . . . . . . . . . . . 46
17 Triple point of water — Results . . . . . . . . . . . . . . . . . . . 47
18 Triple point of water — Linear Pool . . . . . . . . . . . . . . . . 48
19 Activity of 60Co — Data . . . . . . . . . . . . . . . . . . . . . . . 50
20 Activity of 60Co — Linear Pool . . . . . . . . . . . . . . . . . . . 51
21 Activity of 60Co — Results . . . . . . . . . . . . . . . . . . . . . 51
22 Activity of 60Co — Bilateral Degrees of Equivalence . . . . . . . 52
23 Calibration Factor of RF Power Sensor — Data . . . . . . . . . . 53
24 Calibration Factor of RF Power Sensor — Results . . . . . . . . . 54
25 Lead in Lead Free Solder — Data & KCRV . . . . . . . . . . . . . 56
26 Lead in Lead Free Solder — Unilateral DoEs . . . . . . . . . . . . 57
27 CCT-K4 — Data and Linear Pool . . . . . . . . . . . . . . . . . . 60

nicob 2020 nov 12 3 / 85



1 Introduction

The NIST Consensus Builder (nicob) serves to combine measurement results
obtained by di�erent laboratories, or by application of di�erent measurement
methods, into a consensus estimate of the value of a scalarmeasurand. The nicob
quali�es the consensus estimate with an evaluation of measurement uncertainty
that captures not only the stated uncertainties associated with the individual
measured values, but also any additional component of uncertainty that mani-
fests itself only when these measured values are inter-compared.
The nicob can also report the di�erences between individual measured values
and the consensus value, and the di�erences between pairs of values measured
by di�erent laboratories or methods, in both cases qualifying these di�erences
with evaluations of associated uncertainty. In the context of Key Comparisons,
these di�erences and associated uncertainties are called (unilateral, and bilat-
eral, respectively) degrees of equivalence (DoE) (Comité International des Poids
et Mesures (CIPM), 1999).
When the reported measurement uncertainties associated with the individual
measured values are quali�ed with the numbers of degrees of freedom that they
are based on, these numbers are taken into account as well. In general, the num-
bers of degrees of freedom convey the reliability of the evaluations of measure-
ment uncertainty, expressing the extent of the underlying evidentiary basis, be it
the size of the experimental data or the strength of other information used when
producing the evaluations.
According to the Technical protocol for a key comparison (CIPM, 2014, 4.4), re-
porting these numbers of degrees of freedom is required for Key Comparisons:
“Uncertainties are evaluated at a level of one standard uncertainty and informa-
tion must be given on the number of e�ective degrees of freedom required for a
proper estimation of the level of con�dence.” However, the reports of many Key
Comparisons do not list them.
Section 2 summarizes the steps that need to be taken to use the nicob. Section 3
outlines several guiding principles that de�ne the methods implemented in the
nicob, and illustrates and discusses these methods as they are applied to a set of
measurement results for one of the measurands considered in key comparison
CCQM-K25 (Schantz et al., 2003).
After reading Sections 2 and 3, users should be ready to make informed choices
to apply the nicob to their own data, and to interpret the results, without further
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study of this manual. However, for the reader wishing to gain a more thorough
appreciation for the technology implemented in the nicob, the Appendix reviews
details of the statistical methods, and Section 4 presents additional examples of
application using data from the following studies, in all cases providing back-
ground information on the study, detailing the data that were used, and explain-
ing the meaning of the results.

• Carotid Artery Stenosis (§4.1) reviews a meta-analysis in medicine compar-
ing the performance of two alternative procedures for the treatment of
carotid stenosis. Such retrospective comparisons of medical procedures,
or of medical centers, which aim to strengthen conclusions by pooling
data from multiple studies, account for the bulk of the inter-comparisons
and collaborative trials conducted and published in any particular year and
across all �elds of application. In this example, the data are counts of cases
of stroke or death, and require some pre-processing before they can be
input into the nicob.

• Length of Gauge Blocks (§4.2) uses the results of key comparison CCL-K1,
carried out by the CIPM’s Consultative Committee for Length, and ad-
dresses the issue of heterogeneity di�erently from a previously published
reanalysis of the same data (Cox, 2007). In this example, numbers of de-
grees of freedom are available that qualify the standard uncertainties as-
sociated with the measured values.

• Triple Point of Water (§4.3) is part of key comparison CCT-K7, conducted
by the CIPM’s Consultative Committee for Thermometry, and concerns
a comparison between national reference standards and a bipm reference
standard. A mixture model (Linear Pool) is �tted to a sample of simulated
values of the consensus value that is produced by the nicob, and compared
with a similar statistical analysis described in the CCT-K7 Final Report.

• Activity of Radionuclide
60Co (§4.4) is being measured in the ongoing key

comparison BIPM.RI(II)-K1.Co-60, organized by the CIPM’s Consultative
Committee for Ionizing Radiation (Section II, Measurement of Radionu-
clides) that supports the International Reference System (sir) maintained
at the International Bureau of Weights and Measures (bipm) in Sèvres,
France. This inter-comparison involves a considerably larger number of
participants than most key comparisons, and exhibits marked di�erences
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both between the measured values and between the associated uncertain-
ties.

• Radiofrequency Power Sensor (§4.5) reanalyzes measurement results from
key comparison CCEM.RF-K25.W, and compares the key comparison ref-
erence value (kcrv) computed in the original study with its counterparts
produced by the procedures implemented in the nicob. It also discusses
data selection based on a statistical criterion for outlier detection.

The accompanying graphical representations of the results obtained in these ex-
amples, any pre-processing that the data will have had to undergo in prepara-
tion for their use in the nicob, and also alternative analyses that are presented
in some cases, using methods not available in the nicob, all were done using the
R environment for statistical computing and graphics (R Core Team, 2015).
Section 5 emphasizes that the nicob ought not be misconstrued as a toolbox
capable of addressing all the needs of data reductions arising in the context of
interlaboratory studies or inter-method comparisons, and discusses cases where
either it simply cannot provide a satisfactory solution to the problem of consen-
sus building, or where its application would be inappropriate.
For example, the nicob does not o�er means to address the challenge posed by
measurands whose values may drift in the course of an inter-comparison. Nei-
ther is it suitable for the analysis of results from pro�ciency tests because it does
not produce the performance metrics that typically are the focus of such tests
(Thompson et al., 2006).
Section 6 summarizes technical details of the implementation and deployment of
the nicob as an application available in the World Wide Web.

2 Quick Start

2.1 Access

Access the nicob via a Web browser by visiting consensus.nist.gov, which
will display a page as illustrated in Exhibit 1 on Page 7. Clicking on About the
NIST Consensus Builder brings up general information about the application.
After inputting values for the �elds displayed on the Enter data page, as de-
scribed in §2.2, the user can verify that these inputs are valid by clicking the
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button at the bottom of the page labeled Validate inputs. Then the user selects a
data reduction method from among the three listed on the left hand-side of the
page: DerSimonian-Laird, Hierarchical Bayes, or Linear Pool.

Exhibit 1: User interface for the nicob presented by a Web browser when vis-
iting https://consensus.nist.gov.

Buttons at the bottom of the Enter data page, shown in Exhibit 2, allow the
user to load and save con�guration �les with inputs for the nicob. Clicking
the button labeled Save Configuration File downloads a plain text �le named
consensus.ncb to the local machine, which speci�es the current inputs for the
nicob. To use a previously saved con�guration �le, search for and select the �le
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using the Browse button.
Alternatively, the nicob also accepts con�guration �les with inputs speci�ed as
comma separated values and extensions .ncb, .csv, or .txt. Each row of the
�le designates data from a di�erent laboratory or measurement method, and the
�le can have two, three, or four comma separated columns. For each row, data
should by entered in the order: name (if available), measured value, standard
uncertainty, and number of degrees of freedom (if available; missing or in�nite
degrees of freedom should be entered as Inf).

Exhibit 2: Buttons at the bottom of the Enter data page which allow the user
to load or save con�guration �les with inputs for the nicob.

2.2 General Inputs

• Labels designating the 𝑛 participating laboratories (reqired — character
strings comprised of letters or numbers, separated from one another by
commas).

note: Adding a minus sign as pre�x to the label of a labora-
tory signi�es that the corresponding measurement result will
be left out of the calculation of the consensus value and of the
evaluation of the uncertainty associated with it, but degrees of
equivalence will still be computed for it.
Example 4.6 demonstrates the use of this feature, where the la-
bels designating the participating laboratories are speci�ed as

-INMETRO, -VNIIM, NIM, NMIJ, KRISS, PTB, BAM, -INTI, -NIST, -NRC

If all participants but one are left out of the calculation of the
consensus value, then the consensus value will be identical to
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the value measured by the sole participant left in, and its asso-
ciated uncertainty will be the uncertainty reported by this par-
ticipant.
If a single laboratory is included, and all the others are excluded
from the calculation of the consensus value, then only theDerSimonian-
Laird procedure, with degrees of equivalence calculated accord-
ing to the mra, will produce results.
At least two laboratories must be included to be able to use
the Hierarchical Bayes or Linear Pool procedures (with degrees
of equivalence calculated according to the mra), and at least
three labs must be included for any of the alternative procedures
to calculate degrees of equivalence based on leave-one-out esti-
mates.

• Measured values 𝑥1, . . . , 𝑥𝑛 produced by 𝑛 di�erent laboratories or mea-
surement methods (reqired — numbers separated by commas, which
may be written in scienti�c notation as in 3.52e1 or 352e−1, both meaning
35.2).

• Measurement units to qualify the numerical values of the measured values,
for example mg/kg, which are used to label axes of plots (optional —
character string).

• Standard uncertainties𝑢1, . . . , 𝑢𝑛 associatedwith themeasured values (reqired
— positive numbers separated by commas).

• Numbers of degrees of freedom 𝜈1, . . . , 𝜈𝑛 on which the standard uncer-
tainties are based (optional — positive numbers separated by commas).
Missing or in�nite degrees of freedom should be entered as Inf.

• Coverage probability (positive number between 0 and 1) desired for the
coverage intervals (reqired, default: 0.95).

• Indication, by means of a check-box, of whether degrees of equivalence

should be computed (default: Not computed).
If this box is checked, additional input �elds appear and the user is prompted
to enter the following:
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– Indication, by means of a radio button, of whether degrees of equiv-
alence should be computed as de�ned in the mra or based on leave-

one-out estimates, as explained in Sections 3.2.8 and A.5.
– Number of bootstrap replicates for degrees of equivalence uncertainty

calculation. This is only used for the DerSimonian-Laird procedure
(default: 10 000); the Hierarchical Bayes and Linear Pool procedures
use for this number the sample sizes of their method speci�c inputs.

2.3 Method Selection

Many di�erent models for data from interlaboratory studies and meta-analysis,
and many di�erent ways of �tting them, have been proposed in the literature,
for example by: Mandel and Paule (1970), Rocke (1983), Hedges and Olkin (1985),
Mandel (1991), Whitehead and Whitehead (1991), Crowder (1992), Hunter et al.
(1992), Searle et al. (1992), Vangel and Rukhin (1999), Cox (2002), Steele et al.
(2002), Iyer et al. (2004), Toman (2007), Cooper et al. (2009), Rukhin (2009), Toman
and Possolo (2009b), Elster and Toman (2010), Rukhin and Possolo (2011), and
Bodnar et al. (2016), among many others.
The three methods implemented in the nicob were selected deliberately to be
very di�erent from one another in several important ways. They are not meant
to be interchangeable, and the user should consider their characteristics, includ-
ing advantages and disadvantages indicated below, to determine which may be
best for the intended purpose. Trying them all and selecting the procedure that
produces the results that best match the user’s preconceptions, or the user’s no-
tion of “ideal” results, would be statistical malpractice.
In the examples discussed in §3.2 and in §4, typically all three procedures im-
plemented in the nicob are applied, not because they are comparably adequate,
but to provide an opportunity to assess the sensitivity of the conclusions to the
choices of model and model-�tting procedure.
Several methods that are commonly used, for example, maximum likelihood esti-
mation and cognates (ml and reml), are not o�ered in the nicob. The omissions
are not intended to suggest that models or model-�tting procedures di�erent
from those available in the nicob are in any way inferior to those implemented
in the nicob.

DerSimonian-Laird The proceduremostwidely used formeta-analysis inmedicine
(DerSimonian and Laird, 1986) is generally recommended for the reduction
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of data from interlaboratory studies in measurement science. Jackson et al.
(2010) point out that the procedure is “remarkably e�cient” when estimat-
ing the consensus value.
Theweightedmean, favored byCox (2002) (where it is labeled Procedure A),
is a particular case of the DerSimonian-Laird procedure. When the nicob
determines that the measurement results are homogeneous (that is, mu-
tually consistent, as explained below), it reverts to the weighted average
automatically.
An important advantage of the DerSimonian-Laird procedure is its ability
to “dampen” the in�uence that measurement results with very small un-
certainties have on the consensus value, particularly when such in�uence
would be consequential: that is, when the measured values di�er from one
another considerably more than their associated uncertainties would sug-
gest they should.
The computation of the DerSimonian-Laird consensus value does not use
the numbers of degrees of freedom qualifying the uncertainty evaluations.
However, when these numbers are available the nicob uses them in the
parametric statistical bootstrap evaluation of the uncertainty associated
with the consensus value, and also in the characterization of the degrees
of equivalence.
An important limitation of the DerSimonian-Laird procedure as originally
de�ned by DerSimonian and Laird (1986) is the potential imprecision in
the characterization of the dispersion of the measured values. The princi-
pal reason for such imprecision is that the uncertainty attributable to the
typically small number of measurement results being inter-compared and
combined is not recognized (Hoaglin, 2016; Guolo and Varin, 2017).
This limitation also impacts negatively the reliability of the evaluation of
the uncertainty associated with the consensus value. However, the fairly
sophisticated uncertainty evaluation implemented in the nicob, described
in §3.2.4 and in §A.2, by and large mitigates this shortcoming. Still, the use
of the DerSimonian-Laird procedure is most appropriate to combine mea-
surement results from ten or more laboratories or measurement methods.

Hierarchical Bayes The three principal advantages of this Bayesian procedure
are: (i) the ability to take the numbers of degrees of freedom into account,
both for estimation of the consensus value and for the evaluation of the
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associated uncertainty; (ii) the proper recognition and propagation of the
uncertainty associated with the dispersion of the measured values above
and beyond what the laboratory-speci�c uncertainties {𝑢 𝑗 } already cap-
ture; and (iii) the opportunity to express some prior knowledge about both
the {𝑢 𝑗 } and the standard deviation 𝜏 of the laboratory e�ects, described
in §3.2.3.
The default value for the scale parameter (which is the median) of the prior
distribution for 𝜏 is a robust estimate of the standard deviation of the mea-
sured values. If it is believed that the observed scatter of the measured
values is unrealistically large (or small), then such belief may be injected
into the analysis by assigning a value to that scale parameter smaller (or
larger) than the default value.
It should be noted that the Bayesian procedure estimates the true value of
the within-lab standard uncertainty 𝜎 𝑗 only when the number of degrees of
freedom 𝜈 𝑗 associated with 𝑢 𝑗 is speci�ed and is �nite. Otherwise, 𝜎 𝑗 = 𝑢 𝑗
is treated as a known constant.
The ability to specify the medians of the prior distributions for 𝜏 and for
{𝜎 𝑗 } is crucial for two reasons: (i) it informs the procedure about the un-
derlying measurement scale (the “right” value for the prior median for 𝜏
when the measured values are expressed in kilogram cannot be the same
as when they are expressed in gram); (ii) it provides the means to con-
vey some weak but relevant information about the expected whereabouts
of the value of 𝜏 and of the {𝜎 𝑗 }, and in particular to “nudge” the poste-
rior estimates of the latter toward larger or smaller values than the stated
uncertainties suggest, if indeed there is credible information about their
su�ering from a shortcoming of this kind.
The hierarchical Bayesian procedure makes more assumptions about the
probability distributions of the elements of the underlying model than the
DerSimonian-Laird procedure. Furthermore, the prior distributions for 𝜏
and for the {𝜎 𝑗 }, although only mildly informative, are likely to be in�u-
ential, particularly when the number of participating laboratories is small
(say, less than ten). Still, the hierarchical Bayesian procedure is recom-
mended, especially if the sample size is less than ten. Note that for a sample
size of two, the Bayesian procedure may run into computational di�cul-
ties.
This Bayesian procedure is intended to be of general purpose, hence the
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adoption of rather noncommittal prior distributions. When resources (con-
sulting statisticians and suitable computational tools) are available, it is
preferable to employ truly informative prior distributions that capture as
completely as possible all the relevant preexisting knowledge about the
value of the measurand and about other potentially in�uential aspects of
the measurement, for example the typical size of the measurement errors
to expect.

Linear Pool The oldest of the three methods implemented in the nicob has
been in use for a long time indeed, apparently dating back to Pierre Simon,
Marquis de Laplace (Bacharach, 1979). It has been modi�ed by many oth-
ers, including Stone (1961), Lindley (1983), Genest et al. (1984), Clemen and
Winkler (1999), and Toman (2007). The method has been “rediscovered” in
di�erent �elds of measurement science, including in thermometry (Steele
et al., 2002) and in chemistry (Duewer, 2004). The original purpose of the
method was to aggregate expert opinions that were expressed in the form
of probability distributions.
The Linear Pool relies on a model for the data that is structurally di�erent
from the laboratory e�ects model that underlies both the DerSimonian-
Laird and Bayesian procedures (§3.2.3): it represents the probability dis-
tribution of the consensus value as a mixture of the probability distribu-
tions associated with the values measured by the participating laborato-
ries. (Here, the word “mixture” is used in the technical sense of probability
theory, for example as reviewed by McLachlan and Peel (2000), and more
speci�cally in §A.4.)
The procedure can be explained very easily in non-technical terms, which
is an important advantage. Furthermore, it makes only modest assump-
tions: either Student’s 𝑡 or Gaussian distributions are assigned to the in-
dividual measurement results, depending on whether numbers of degrees
of freedom have, or have not been speci�ed. The implementation in the
nicob allows the user to specify weights for the values being pooled. The
weights may express subjective assessments of either the quality of the
participating laboratories, or the reliability of the measurement results be-
ing pooled.
The main downsides of the method are that it tends to produce multimodal
distributions, and that it often leads to markedly larger uncertainty evalu-
ations than the DerSimonian-Laird or the Bayesian procedures. However,
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in some cases the Linear Pool produces uncertainties that are quite compa-
rable, or possibly even smaller, than alternative procedures. The procedure
can be used when there are either a large number of measurement results
or when there are only just a few.

2.4 Method-Speci�c Inputs

• For the DerSimonian-Laird procedure (Exhibit 3):

– If the Knapp-Hartung adjustment (explained in A.2) is desired, then
check the corresponding box in the graphical user interface;

– To apply the parametric bootstrap for uncertainty evaluation, check
the corresponding box. This reveals an input �eld for the desired
number of bootstrap replicates (suggested value: 10 000).

• For the hierarchical Bayesian procedure (Exhibit 4):

– Positive numbers in the corresponding boxes in the graphical user
interface, which are used as the medians of the prior distributions for
the between-laboratory and for the within-laboratory (or, between-
method and within-method) variance components (default: robust
indications of spread of themeasured values for the between-laboratory
variability, and for the laboratory-speci�c uncertainty).

– Total number of iterations for the Markov Chain Monte Carlo (mcmc)
sampler (default: 250 000).

– Length of burn-in for the Markov chain, which is the number of
values discarded from the beginning of the realization of the chain
(default: 50 000).

– Thinning rate for the Markov chain. The default value is 25, mean-
ing that only every 25th value generated in the chain should be kept.

When the nicob determines that the total number of iterations may have
been insu�cient to ensure that the Markov chain has achieved its equi-
librium distribution, the nicob will suggest new values for the number of
iterations, length of burn-in, and thinning rate.

• For the Linear Pool (Exhibit 5):
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– Weights (non-negative numbers separated by commas) to be associ-
ated with the di�erent measurement results (default: 1 for all).

– Size of sample drawn from the mixture distribution of the measurand
(default: 100 000).

Exhibit 3: User interface for the nicob corresponding to the speci�-
cation of the DerSimonian-Laird procedure.

2.5 Output

The results appear on a refreshed web page under the section corresponding to
the method selected, and include:

• Consensus estimate, associated standard uncertainty, and coverage inter-
val for the true value of the measurand;

nicob 2020 nov 12 15 / 85



Exhibit 4: User interface for the nicob corresponding to the speci�-
cation of the hierarchical Bayesian procedure.

• If degrees of equivalence were requested, then estimates, standard uncer-
tainties, and expanded uncertainties for di�erences betweenmeasured val-
ues and the consensus value, and between pairs of measured values are
reported and depicted graphically.

Graphical outputs can be saved as pdf �les by clicking their respectiveDownload
plot buttons. After �tting a model, if the user goes back to the Enter data page
and changes the data, then the user must click Fit the model again to update the
results; the results are not updated automatically.

3 Orientation

The nicob represents a compromise between practicability and best practices
for the reduction of data from interlaboratory studies and inter-method com-
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Exhibit 5: User interface for the nicob corresponding to the speci�-
cation of the Linear Pool.

parisons, including collaborative trials. (In analytical chemistry, collaborative
trials are interlaboratory studies to characterize the performance of a particular
method of analysis when it is applied to a well-de�ned material (Thompson and
Lowthian, 2011, Page 180).)
The nicob is not suitable for the reduction of data from pro�ciency tests (Thomp-
son et al., 2006) because these typically involve a reference value that is not a
consensus value derived from all the participants’ measurement results, and also
because several performance metrics are usually evaluated that the nicob does
not produce.
On the one hand, practicability demands that scientists should have within easy
reach (for example, in the World Wide Web) a toolkit to reduce measurement
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results obtained in the course of a comparison. This toolkit should implement
widely accepted principles and methods for statistical data analysis, and be us-
able without specialized knowledge of statistics or of computer programming,
and also without having to download and install any software. Practicability is
further enhanced by minimizing the choices that need to be made when using
the toolkit, and bymaking clear themeaning and potential impact of the di�erent
choices that the user needs to make.
On the other hand, best practices would require that each consensus building ex-
ercise be customized best to address the substantive needs and goals of the study
and the peculiarities of the measurement results, and that this customization be
the result of close collaboration between scientists and statisticians or applied
mathematicians. However, a custom solution inevitably requires the develop-
ment of customized computer codes for data analysis — an unrealistic require-
ment for most laboratories leading or otherwise participating in such interlabo-
ratory studies.
The principles that drive the nicob are outlined in §3.1, and §3.2 provides an ex-
tensive treatment of a particular example, in su�cient detail to provide an appre-
ciation for the methods implemented in the nicob, thus providing the minimal
foundation that enables users to follow the steps described in the Quick Start (§2)
and begin reducing their own data without further study of this manual.
The additional examples presented in §4 have been deliberately drawn from very
di�erent areas of application to increase the chances that users will �nd at least
one example after which they may pattern their own analysis. Additional details
about the statistical methods introduced in §3.2 are provided in Appendix A.
The all-important §5 emphasizes that the nicob is not applicable universally: in
fact, situations often arise when data reductions have to be done using statistical
methods that the nicob does not o�er. At least one example in §4 indicates that
occasionally some data preparation or analysis needs to be done before the nicob
can be used.
And even when the measurement results already are of a form that allows them
to be entered into the nicob directly, it may be preferable to re-express them into
a scale of measurement di�erent from the original, to improve compliance with
assumptions that underlie the methods available in the nicob.
For example, if there is a marked association between the measured values {𝑥 𝑗 }
and their associated uncertainties {𝑢 𝑗 }, whereby the latter tend to increase with
increasing measured values, then it may be best to analyze instead {𝑦 𝑗 } with
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uncertainties {𝑣 𝑗 }, where𝑦 𝑗 = log(𝑥 𝑗 ), 𝑣 𝑗 = 𝑢 𝑗/|𝑥 𝑗 |, and |𝑥 𝑗 | denotes the absolute
value of 𝑥 𝑗 , for 𝑗 = 1, . . . , 𝑛.
If the measured values {𝑥 𝑗 } have generally comparable associated uncertainties
but are an implausible sample from a Gaussian distribution and the user wishes
to employ the hierarchical Bayesian procedure (which assumes that the data are
Gaussian), then it may be best to �t the model to {(𝜑 (𝑥 𝑗 ), 𝑢 𝑗 |𝜑′(𝑥 𝑗 ) |} instead,
where 𝜑 is a suitable Box-Cox transformation (Box and Cox, 1964) and |𝜑′(𝑥 𝑗 ) |
denotes the absolute value of the �rst derivative of 𝜑 evaluated at 𝑥 𝑗 .

3.1 Principles

The nicob is consistent with the following general principles for the combina-
tion of measurement results obtained independently by di�erent laboratories or
measurement methods.

(P1) No measurement result should be set aside except for substantive, docu-
mented cause. The mere fact that a measured value lies far from the bulk
of the others, alone is insu�cient reason to set it aside, even if a statistical
test suggests that it is an outlier.

Graphical and statistical detection of anomalous results, and examina-
tion of consistency indices like Cochran’s𝑄 (Cochran, 1954) or 𝐼 2 (Hig-
gins and Thompson, 2002), are useful screening tools that may serve to
draw the scientists’ attention to measurement results deserving further
scrutiny, but should be advisory, not decisional (CCQM, 2013).
In all cases, substantive considerations, rather than statistical tests,
should drive the selection of the subset of the measurement results that
should be combined into a consensus value.

(P2) No measured value should dominate the consensus value simply because
the associated measurement uncertainty is much smaller than the uncer-
tainties associated with the other measured values, especially when the
measured values are markedly more dispersed than what their associated
uncertainties alone would intimate.

Methods consistent with this principle will therefore include a damping
mechanism to limit the in�uence of unusually small laboratory-speci�c
uncertainty evaluations.
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(P3) Measurement methods should have been characterized su�ciently well to
warrant the belief that the measured values, taken as a group, are roughly
centered at the true value of the measurand.

On the one hand, it is obvious that if all the measured values tend to
be too low or too high, no statistical procedure that relies on the data
alone will be able to detect this and “correct” the consensus estimate
accordingly.
For example, when immunoassays are used to measure the concentra-
tion of vitamin D, they may be persistently low or high, depending on
the antibody that they use for targeting the vitamin, and on how the
vitamin is bound to materials in the matrix of the sample (Tai et al.,
2010; Farrell et al., 2012; Enko et al., 2015).
On the other hand, it is desirable that the statistical procedures used for
data reductions should be able to cope with situations where individ-
ual measured values lie far from the bulk of the others, and also with
situations where there is some asymmetry in the apparent distribution
of the measured values (CCQM, 2013).
For example, some methods for extracting polychlorinated biphenyls
(PCBs) from riverine sediments, or for extracting arsenic from oyster
tissue, may do so only incompletely. In such cases, the distribution of
measured values may be markedly asymmetrical, showing a histogram
whose left tail is longer than the right tail (Possolo, 2013).
The models and methods implemented in the nicob may be applicable
only after the measured values will have been suitably transformed,
for example using a Box-Cox transformation (Box and Cox, 1964), in
which case the associated uncertainties should be transformed accord-
ingly, typically by application of the DeltaMethod (Possolo and Toman,
2011, §5.2). The need for transformation arises often when there is a
natural upper or lower bound for the value of the measurand and the
measured values are close to a bound (e.g., mass fractions of rare ele-
ments in geochemical samples, or the amount-of-substance fraction of
a chemical compound in a high-purity material).

(P4) A statistical model should be formulated that explicitly relates themeasured
values to the true value 𝜇 of the measurand, and the model should include
elements representing contributions from the recognized sources of uncer-
tainty. Furthermore, the estimation of 𝜇, and the evaluation of associated
uncertainty, should be consistent with the statistical model and with some
principle of estimation whose general reliability is widely recognized.
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Typically, the required model will be a statistical model where 𝜇 ap-
pears as a parameter of the probability distribution of the measurement
results. The measured values, and possibly also their associated uncer-
tainties, are modeled as observed values of random variables.
The principle suggests that a mere prescription or recipe for how the
data should be reduced, without a clear description of how the data
relate to the measurand and of implied assumptions, is not helpful.

(P5) The statistical model underlying data reductions should be able to detect,
evaluate, and propagate uncertainty components that produce excess vari-
ance indicating signi�cant heterogeneity of the measured values, which is
an expression of so-called dark uncertainty (Thompson and Ellison, 2011),
whereby the measured values are substantially more dispersed than is to be
expected based on their stated, laboratory-speci�c uncertainties.

Heterogeneity, or the presence of “excess” variance, is often the object
of a statistical test, for example, a test based on Cochran’s𝑄 . However,
the tests in common use have notoriously low power (probability of
detecting heterogeneity when in fact the measurement results are het-
erogeneous) (Hoaglin, 2016). For this reason, it may be safest always to
proceed on the assumption that there may be some heterogeneity, and
then propagate it to all derivative quantities, including to the degrees
of equivalence.
The willingness of the participants in an interlaboratory study to en-
gage in an inter-comparison includes a tacit agreement to abide by the
resulting �ndings, in particular to recognize any component of uncer-
tainty that their individual uncertainty evaluations would have missed
and that becomes apparent only once independent measurement re-
sults are inter-compared.
In particular, the detection of signi�cant heterogeneity in cases where
there is no reason to impugn the assumption of there being a com-
mon measurand, implies that the laboratory-speci�c uncertainty eval-
uations are too small, and that comparisons between individual mea-
sured values and the consensus value, or between pairs of individual
measured values, should take dark uncertainty into account (Exhibit 6
provides an illustration of this situation).

(P6) Degrees of equivalence (di�erences betweenmeasured values and a consen-
sus value, or between pairs of measured values, quali�ed with evaluations
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of associated uncertainty) should be computed consistently with their pri-
mary goal of identifying measured values that are signi�cantly discrepant
either from the consensus value or from one another.

3.2 Illustration and Overview of Methods

Key Comparison CCQM-K25 was carried out by the Consultative Committee for
the Amount of Substance (Metrology in Chemistry and Biology), to compare mea-
surement results for the mass fractions of �ve di�erent polychlorinated biphenyl
(PCB) congeners in sediment (Schantz andWise, 2004). Exhibit 6 on Page 23 lists
the measurement results for PCB 28 (2,4,4’-trichlorobiphenyl) that were selected
based on the substantive reasons described by Schantz and Wise (2004), and de-
picts some of the results that the nicob produced. To load these measurement
results into the nicob, click here.
The measurement results selected for further analysis were obtained by 𝑛 = 6
national metrology institutes: Joint Research Centre Institute for Reference Ma-
terials and Measurements (IRMM, Geel, Belgium); Korea Research Institute of
Standards and Science (KRISS, Daejeon, Republic of Korea); National Measure-
ment Institute Australia (NARL, Sydney, Australia); National Institute of Stan-
dards and Technology (NIST, Gaithersburg, USA); National Metrology Institute
of Japan (NMIJ, Tsukuba, Japan); and National Research Council Canada (NRC,
Ottawa, Canada).
Exhibit 7 on Page 24 summarizes the results that the three procedures available
in the nicob produced when they were applied to the measurement results for
PCB 28 listed in the top panel of Exhibit 6.

3.2.1 Measurement Results

The measurement result from laboratory 𝑗 = 1, . . . , 𝑛 is a triplet (𝑥 𝑗 , 𝑢 𝑗 , 𝜈 𝑗 ) com-
prising a measured value of the mass fraction 𝑥 𝑗 of PBC 28 in the material used
in CCQM-K25, an evaluation of the associated standard uncertainty 𝑢 𝑗 , and the
number of degrees of freedom 𝜈 𝑗 onwhich the uncertainty evaluation is based. In
many interlaboratory studies the {𝜈 𝑗 } are not reported. In such cases, the nicob
makes the (likely unrealistic) assumption that these numbers of degrees of free-
dom are very large, practically in�nity, which may give rise to overoptimistic
uncertainty evaluations for the consensus value.
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lab 𝑥 (ng/g) 𝑢 (ng/g) 𝜈 lab 𝑥 (ng/g) 𝑢 (ng/g) 𝜈

IRMM 34.30 1.03 60 NIST 32.42 0.29 2
KRISS 32.90 0.69 4 NMIJ 31.90 0.40 13
NARL 34.53 0.83 18 NRC 35.80 0.38 60
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Exhibit 6: top panel: Measured values 𝑥 of the mass fraction (ng/g) of PCB 28
in the material used in CCQM-K25, standard uncertainties 𝑢, and numbers of
degrees of freedom 𝜈 on which the standard uncertainties are based. bottom
panel: Each large (red) dot represents the value 𝑥 measured by a participating
laboratory, and the thick, vertical (blue) line segment depicts 𝑥 ± 𝑢. The thin,
vertical line segment depicts 𝑥 ± (𝜏2 + 𝜎2)½, where the uncertainty includes
the contribution from dark uncertainty, estimated as the posterior mean 𝜏 =

1.68 ng/g, and the posterior mean 𝜎 of the standard uncertainty 𝑢, as produced
by the Bayesian procedure. The thin, horizontal (dark green) line marks the
consensus value 𝜇̂ = 33.6 ng/g, which is the mean of the posterior distribution
of 𝜇 obtained by application of the hierarchical Bayesian procedure. The shaded
(light green) band represents 𝜇̂ ± 𝑢 (𝜇), where 𝑢 (𝜇) is the standard deviation of
the posterior distribution of 𝜇.
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procedure consensus std. unc. 95 % cov. int.

DerSimonian-Laird 33.6 0.77 (32.0, 35.2)
Hierarchical Bayesian 33.6 0.79 (32.0, 35.2)

Linear Pool 33.6 1.55 (31.4, 36.3)

Exhibit 7: Results of the three consensus-building procedures implemented in the
nicob, for the mass fraction of PCB 28, all expressed in ng/g. The standard uncertainty
and coverage interval for the DerSimonian-Laird procedure were computed using the
version of the parametric statistical bootstrap described in §A.2, which includes consid-
eration for the small number of measurement results that the estimate of dark uncer-
tainty 𝜏 is based on.

The notion of degrees of freedom, as it is used in this context, often is a source of
confusion and even acrimony. When𝑢 𝑗 is the result of a Type A evaluation — dis-
cussed by Taylor and Kuyatt (1994, §3), Joint Committee for Guides in Metrology
(JCGM) (2008, §4.2), and Possolo (2015, §5) —, the corresponding 𝜈 𝑗 is a function
of the number of observations used to compute 𝑢 𝑗 . For example, when 𝑢 𝑗 is the
standard deviation of the sampling distribution of the average of a set of𝑚 𝑗 ob-
servations obtained under conditions of repeatability, then 𝜈 𝑗 =𝑚 𝑗−1. But when,
as is most often the case, 𝑢 𝑗 combines the results of Type A and Type B evalua-
tions of several di�erent components of uncertainty, any assignment of value to
𝜈 𝑗 is likely to prove controversial.
Occasionally, one runs across suggestions to the e�ect that a Bayesian approach
does awaywith the need to consider degrees of freedom (Bich, 2012; Kacker et al.,
2016), when in fact it does not. The paradigmatic example arises in the context
of Bayesian estimation of the mean of a Gaussian distribution based on a sample
of size𝑚 with average 𝑥 and standard deviation 𝑠 , when both the mean and the
variance of this distribution are unknown, and the lack of a priori knowledge
about their values is expressed using the invariant prior distribution suggested
by Je�reys (1946).
In these circumstances, the marginal posterior distribution of the mean is a re-
scaled and shifted Student’s 𝑡 distribution with 𝜈 = 𝑚 − 1 degrees of freedom
(Box and Tiao, 1973, Theorem 2.4.1). The associated standard uncertainty is the
standard deviation of this posterior distribution. The probabilistic interpretation
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of every coverage interval (which is a Bayesian credible interval) of the form
𝑥 ± 𝑘𝑠/

√
𝑚, and in particular the probabilistic interpretation of the standard un-

certainty, depends on 𝜈 .
Therefore, it is only a matter of semantics whether one says that this number 𝜈
of degrees of freedom pertains to the posterior distribution of the mean or to the
standard uncertainty. In any case, 𝜈 summarizes the extent of the evidentiary
basis on which evaluations and expressions of measurement uncertainty (say,
coverage intervals) are based.

3.2.2 Dark Uncertainty

The standard deviation of the measured values {𝑥 𝑗 } listed in Exhibit 6 equals
1.48 ng/g, while the laboratory-speci�c standard uncertainties range from 0.29 ng/g
to 1.03 ng/g, and their median equals 0.545 ng/g. Therefore, the measured val-
ues are almost three times more dispersed than the typical, within-laboratory
standard uncertainty.
This “excess” variance is often interpreted as suggesting that the laboratories
have failed to identify and evaluate one ormore important sources of uncertainty,
whose contribution Thompson and Ellison (2011) have called dark uncertainty.
Dark uncertainty is uncovered often in interlaboratory studies carried out in
measurement science, both for physical and chemical quantities, and in meta-
analytic studies of medical procedures and therapies. Most recently, measure-
mentsmade using thewatt balance revealed a surprisingly large dark uncertainty
in mass determinations using state-of-the-art equipment (Stock, 2011). The mea-
surement of the Newtonian constant of gravitation, 𝐺 , a�ords another cogent
illustration of the existence of dark uncertainty (Speake and Quinn, 2014).
Hundreds of experiments have been performed over time to measure the value
of𝐺 , one of the earliest having been Henry Cavendish’s (Cavendish, 1798). Even
though much e�ort and great rigor have been applied to the characterization of
the corresponding uncertainty budgets, the dispersion of the resulting measured
values of𝐺 still is strikingly larger than what the stated uncertainties would lead
one to expect.
This state of a�airs has given great impetus to collective e�orts to identify the
underlying causes, which are expected to produce not only improved estimates
of𝐺 , but also, and maybe most importantly, signi�cant advances in the measure-
ment of very weak forces generally.
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These collective e�orts include rather extreme measures in attempts to identify
the underlying causes for such dispersion of values: for example, moving a tor-
sion balance from a laboratory in Sèvres, France, to another in Gaithersburg,
Maryland, USA. And also the exploration of techniques radically di�erent from
those that have traditionally been used for measuring𝐺 , for example using laser-
cooled atoms and quantum interferometry (Rosi et al., 2014).
The documentation of the presence of dark uncertainty, achieved through its
reliable detection and rigorous quanti�cation, perforce ought to impact the com-
putation of the consensus value, the evaluation of the associated uncertainty,
and also the assessment of the signi�cance of the di�erences between individual
measured values and the consensus value (unilateral degrees of equivalence).
The detection and quanti�cation of dark uncertainty act as stimulants for re-
search and discovery, and ultimately will lead to improvements in the quality of
measurements.
The quanti�cation of dark uncertainty, based on a set of measured values quali-
�ed with evaluations of measurement uncertainty, has been for quite some time,
and continues to be, a very active area of research (Higgins and Thompson, 2002;
Higgins et al., 2003; Viechtbauer, 2007; Rukhin, 2013; Turner et al., 2015). In gen-
eral, by taking dark uncertainty properly into account:

(i) The in�uence that measured values accompanied by very small stated un-
certainties have upon the consensus value is reduced, because a common
dark uncertainty component acts as a damping or modulating factor;

(ii) The (statistical) signi�cance of di�erences between individual measured
values and the consensus value, also is reduced, and the proportion of dis-
crepant laboratories is reduced accordingly, because the existence of dark
uncertainty blurs di�erences that might otherwise, but only illusorily, ap-
pear sharp.

Consideration of the contribution that dark uncertainty makes to the e�ective
uncertainty surrounding each measured value enables a rigorous assessment of
how realistic the stated uncertainties are, separately and distinctly from the as-
sessment of apparent bias (that is, persistent deviation from the consensus value)
of the measured values, when both criteria of performance are appraised by the
community of participating laboratories.
Consistently with the spirit of the gum (Joint Committee for Guides in Metrol-
ogy (JCGM), 2008), although not possibly with its letter because the gum does
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not consider interlaboratory studies, these downstream calculations must take
into account contributions from all sources of uncertainty: both those that were
captured in bottom-up evaluations performed by the participating laboratories
individually, and those, whose joint e�ect ismanifest in the dark uncertainty, that
were the object of the top-down evaluation enabled by the inter-comparison of
the measurement results (Possolo, 2015).
A laboratory random e�ects model is able to characterize dark uncertainty quan-
titatively (Toman and Possolo, 2009b, 2010; Borenstein et al., 2010). This model
has many variants and a long history of use and proven utility, often being de-
scribed as a variance components model for the analysis of variance (Searle et al.,
2006).

3.2.3 Laboratory Random E�ects Model

A laboratory random e�ectsmodel represents the value of themass fractionmea-
sured by laboratory 𝑗 as 𝑥 𝑗 = 𝜇+𝜆 𝑗 +𝜀 𝑗 for 𝑗 = 1, . . . , 𝑛, where𝑛 (which equals 6 in
the case of PCB 28) is the number of laboratories, 𝜇 denotes the measurand that
is estimated by the consensus value, 𝜆1, . . . , 𝜆𝑛 are the laboratory e�ects, and
𝜀1, . . . , 𝜀𝑛 represent measurement errors. This model underlies two of the pro-
cedures implemented in the nicob: DerSimonian-Laird (§A.2) and hierarchical
Bayes (§A.3).
If the data were only the {𝑥 𝑗 } then it would be impossible to distinguish the
laboratory e�ects {𝜆 𝑗 } from the measurement errors {𝜀 𝑗 } because increasing 𝜆 𝑗
and decreasing 𝜀 𝑗 correspondingly, while keeping 𝜇 �xed, would still reproduce
the same 𝑥 𝑗 .
However, since the {𝑢 𝑗 } also are part of the data, and we know that the absolute
values of the {𝜀 𝑗 } are generally comparable to the {𝑢 𝑗 }, we can conclude that
any “excess variance” exhibited by the {𝑥 𝑗 } is attributable to the {𝜆 𝑗 }, whose
dispersion (or scatter) is gauged by 𝜏 .
The speci�c version of the laboratory random e�ects model is determined by the
modeling choices made for the {𝜆 𝑗 } and the {𝜀 𝑗 }. The DerSimonian-Laird pro-
cedure makes fewer assumptions about them than the hierarchical Bayes proce-
dure, except when it comes to the uncertainty analysis, where the assumptions
made by both methods are quite comparable.
The more speci�c (and more restrictive) assumptions that underlie the uncer-
tainty evaluation for the DerSimonian-Laird procedure and the Bayesian model
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are: (i) the {𝜆 𝑗 } are considered to be a sample from a Gaussian distribution with
mean 0 and standard deviation 𝜏 ; (ii) the {𝜀 𝑗 } are assumed to be outcomes of inde-
pendent Gaussian random variables with mean 0 and possibly di�erent standard
deviations {𝜎 𝑗 }; and (iii) the {𝜆 𝑗 } and the {𝜀 𝑗 } are mutually independent.
Since the random e�ects model “explains” the data as an additive superposition
of e�ects, both the DerSimonian-Laird and hierarchical Bayesian procedures rely
on the assumption that the underlying measurement scale is linear, in the sense
that the same di�erences between measured values have the same meaning irre-
spective of whether the values being di�erenced are both low or both high. For
some measurands, and in some measurement situations, this is not the case at
all.
When there is a natural bound for the true value of the measurand, the measure-
ment scale in fact may be “compressed” non-linearly in the vicinity of the bound.
For example, when measuring purity of an alloy that comprises mostly a single
metal with only minor amounts of impurities, the upper bound is 100 % and the
measured values often appear to be a sample from a distribution that has a left
tail heavier that the right tail (which terminates abruptly at 1).
In some cases there is a relationship between the measured values {𝑥 𝑗 } and the
corresponding associated uncertainties {𝑢 𝑗 }. This relationship is so prevalent in
analytical chemistry, for example, that it has been exploited to produce approxi-
mate uncertainty evaluations in the absence of any other information (Horwitz,
1982, 2003). Even though the model can take into account di�erent uncertainties
for di�erent laboratories, the existence of such relationship is a subtle hint of
non-linearity in the underlying measurement scale.
For these and other reasons, it may be advantageous to carry out the analysis
after the data will have been re-expressed into another scale. Two generally use-
ful classes of transformations are the Box-Cox transformations and the folded-
power transformations.
The Box-Cox transformations map a measured value 𝑥 onto (𝑥𝑝 − 1)/𝑝 for some
suitable value of 𝑝 (Box and Cox, 1964; Mosteller and Tukey, 1977), with 𝑝 = 0
indicating the logarithm.
The folded-power transformations map a proportion 0 6 𝑥 6 1 onto 𝑥𝑝−(1−𝑥)𝑝
for some value of 𝑝 usually selected from between 0 and 1. For 𝑝 = 0, the transfor-
mation reduces to the folded logarithm, which is the familiar logit, log(𝑤/(1−𝑤))
(Tukey, 1977; Mosteller and Tukey, 1977; Emerson, 1991).
If the measured values are re-expressed, then uncertainties need to be computed
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accordingly. This can be done by application of either the Delta Method (Pos-
solo and Toman, 2011, §5.2), or a suitable Monte Carlo method. And similar care
needs to be taken when transforming the results back onto the original measure-
ment scale. The nicob does not o�er facilities to apply Box-Cox or folded-power
transformations.

3.2.4 DerSimonian-Laird Procedure

TheDerSimonian-Laird consensus value is a weighted average of the valuesmea-
sured by the participating laboratories, 𝜇̂DL =

∑𝑛
𝑗=1𝑤 𝑗𝑥 𝑗 /

∑𝑛
𝑗=1𝑤 𝑗 = 33.6 ng/g,

with weights𝑤 𝑗 = 1/(𝜏2+𝜎2𝑗 ) for 𝑗 = 1, . . . , 𝑛. The presence of 𝜏 in all the weights
dampens the impact of very small values among the {𝜎 𝑗 } (cf. principle P2).
Since both 𝜏 and the {𝜎 𝑗 } are unknown, they are substituted by estimates, 𝜏DL
and 𝜎 𝑗 = 𝑢 𝑗 . The {𝑢 𝑗 }may be the result of either Type A or Type B evaluations, or
combine results of both Type A and Type B evaluations, or they may be standard
deviations of Bayesian posterior distributions.
In the DerSimonian-Laird procedure, the estimate of 𝜏 is obtained by equating
observed and expected values of a particular function of the measurement re-
sults (a so-called method of moments estimate). The resulting 𝜏DL is then used
in the de�nition of the weights {𝑤 𝑗 } as if it were known without uncertainty,
which is obviously unsatisfactory, especially when the number of participating
laboratories is as small as it is for PCB 28.
Even though there is a closed-form expression for the variance of a weighted
mean, the reliability of such expression is questionable in this case because the
weights depend on quantities (𝜏 in particular) that have to be estimated from the
data. Similarly, treating the {𝑢 𝑗 } as known constants when they are based on
small numbers of degrees of freedom also in unrealistic.
Alternatively, and preferably,𝑢DL(𝜇)may be evaluated by application of the para-
metric statistical bootstrap, which o�ers the ability to take into account the num-
bers of degrees of freedom {𝜈 𝑗 } associated with the {𝑢 𝑗 }, and also to recognize
the impact that the typically small number 𝑛 of measurement results has on the
reliability with which 𝜏 is estimated (refer to §A.2 for details).
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3.2.5 Hierarchical Bayesian Procedure

The Bayesian procedure is based on a principle of estimation whereby 𝜇 is mod-
eled as a random variable and the consensus value is the mean of the probability
distribution of 𝜇 given the measurement results {(𝑥 𝑗 , 𝑢 𝑗 , 𝜈 𝑗 )}, computed accord-
ing to Bayes’s rule (DeGroot and Schervish, 2012; Possolo and Toman, 2011).
In a Bayesian analysis, unknown quantities (𝜇, {𝜆 𝑗 }, 𝜏 , {𝜎 𝑗 }) are modeled as out-
comes of non-observable randomvariables, and themeasurement results {(𝑥 𝑗 , 𝑢 𝑗 , 𝜈 𝑗 )}
are modeled as actually observed outcomes of random variables.
The expression “random variable” does not imply that there is anything chancy

about the value of the corresponding quantity. It simply indicates that there is a
probability distribution associated with the quantity. This probability distribu-
tion recognizes that the value of the quantity is generally unknown, owing either
to natural sampling variability, or to incomplete knowledge.
The probability distributions for the unknowns, re�ecting a priori (that is, be-
fore acquiring any data) states of knowledge about their true values, are called
prior distributions. These distributions may involve parameters (called hyper-

parameters) that must be assigned values at the outset.
In the nicob, the prior distributions assigned to unknown quantities, including
the measurand, are all weakly informative to give the data the broadest oppor-
tunity to in�uence the consensus value and all the other results of the data re-
ductions. For example, the prior distribution for 𝜇 is Gaussian with mean 0 and
a very large standard deviation (105). But even weakly informative priors can be
rather in�uential, particularly when the number 𝑛 of measured values is small
(Lambert et al., 2005).
In many cases encountered in practice, there is considerable a priori informa-
tion about the measurand (for example, that the amount-of-substance fraction
of ethane, in a synthetic mixture designed to emulate natural gas, lies within a
fairly narrow interval). There may also exist a priori information about other
parameters in the model (for example, about the measurement uncertainty 𝜎 𝑗
associated with a gravimetric preparation). In general, taking such information
into account requires a custom solution that the nicob is unable to provide.
The only two prior distributions used in the nicob that have adjustable hyper-
parameters pertain to the between-laboratory dispersion of values 𝜏 , and to the
laboratory-speci�c, true standard uncertainties {𝜎 𝑗 }. The prior distributions for
𝜏 and for the {𝜎 𝑗 } are re-scaled Cauchy distributions truncated at zero, as sug-
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gested by Gelman (2006). The hyper-parameters are the corresponding medians.
These half-Cauchy distributions are weakly informative because their variances
are in�nite (and their means are unde�ned).
In the example we have been considering concerning the mass fraction of PCB 28
in CCQM-K25, whenwe accept the default value, 1.56 ng/g, for the hyper-parameter
corresponding to 𝜏 , we are expressing our a priori belief that the true value of 𝜏
is as likely to be smaller as it is to be larger than this value. The default value
of this hyper-parameter is a robust estimate (produced by R function mad) of the
standard deviation of the measured values.
And when we accept the default value (the median of the {𝑢 𝑗 }) 0.545 ng/g for
the hyper-parameter corresponding to the {𝜎 𝑗 }, we are indicating that the true
values of the {𝜎 𝑗 } are as likely to be smaller to be larger than this value.
These default hyper-parameter values are reasonable approximations for theme-
dians of the half-Cauchy prior distributions, and allow the nicob to be easily ap-
plied to a variety of datasets by being aware of the actual units of measurement.
A more informative, and likely more useful Bayesian approach would require
the user to examine and elicit their prior beliefs before looking at the data and
choose hyper-parameters that incorporate actual prior knowledge.
Since the probability distribution that Bayes’s rule produces for 𝜇 cannot be com-
puted explicitly and analytically with the modeling choices just described, the
consensus value produced by the Bayesian procedure is obtained as the aver-
age of a large sample of values drawn from the posterior distribution of 𝜇 via
Markov Chain Monte Carlo (mcmc) sampling, and the associated standard un-
certainty is the standard deviation of this mcmc sample (Gelman et al., 2013). For
the mass fraction of PCB 28, the Bayesian procedure yields 𝜇̂𝐻𝐵 = 33.6 ng/g and
𝑢HB(𝜇) = 0.79 ng/g.
One 95 % coverage interval (usually called a 95 % credible interval in this Bayesian
context) for 𝜇 is de�ned so that 2.5 % of the values in the mcmc sample are smaller
than its lower endpoint, and another 2.5 % are larger than its upper endpoint.
This interval ranges from 32.0 ng/g to 35.2 ng/g. Exhibit 8 on Page 32 shows a
smooth histogram of the mcmc sample and a Gaussian approximation to it.

3.2.6 Sampling-Theoretic vs. Bayesian Procedures

Even though the DerSimonian-Laird procedure and the hierarchical Bayes proce-
dure rely on the samemodel, they are fundamentally di�erent in concept, in how
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Exhibit 8: Posterior probability density of the consensus value, produced by
the Bayesian procedure. The large (blue) diamond marks the estimate of the
consensus value, and the (red) dots indicate the measured values. The thin,
dashed (green), bell-shaped curve is a Gaussian probability density with the
samemean and standard deviation as the posterior distribution of the consensus
value: the latter has markedly heavier tails than this Gaussian approximation.

they are �t to the data, and in the meaning that they implicitly ascribe to the re-
spective results. These di�erences may be summarized by saying that the former
is sampling-theoretic (or, frequentist), while the latter is Bayesian — which is not
saying much unless one is already familiar with the meaning of these epithets,
hence we explain.
The key di�erences between the sampling-theoretic and the Bayesian approaches
are: (i) how they regard 𝜇, and (ii) how they interpret the uncertainty surround-
ing the true value of 𝜇. (The same di�erences apply to 𝜏 , {𝜆 𝑗 }, and the {𝜎 𝑗 }.)
These approaches may also di�er on how they regard the very measurement re-
sults {𝑥 𝑗 , 𝑢 𝑗 , 𝜈 𝑗 } that one wishes to combine. From the Bayesian perspective, the
{𝑥 𝑗 , 𝑢 𝑗 , 𝜈 𝑗 } may already be attributes of posterior distributions, not of sampling
distributions.
The sampling-theoretic viewpoint focuses on the variability of the consensus
value (the estimate of 𝜇) under hypothetical repetitions of the process that gen-
erated the data. The Bayesian viewpoint focuses on the information that the
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particular data in hand provide about 𝜇, and uses this information to update the
prior distribution for 𝜇 and produce a posterior distribution that typically will be
appreciably less dispersed than the prior distribution.
The sampling-theoretic approach is concerned with (allegedly objective) �uctu-
ations of the consensus value attributable to the vagaries of sampling a possi-
bly hypothetical population, while the Bayesian approach updates a (subjective)
state of knowledge about 𝜇 based on the data that have actually been observed.
The aforementioned �uctuations are only allegedly objective (and not categori-
cally objective) because the sampling contemplated from the sampling-theoretic
viewpoint much more often than not is from a hypothetical population — that
is, from a population whose de�nition is a subjective construct.
The merits and demerits of these di�erent approaches have been debated ad in-

�nitum, not only within statistical circles but also in many areas of science, as
well as within epistemology, which is the branch of philosophy concerned with
knowledge in general and with scienti�c knowledge in particular (Steup, 2014).
Within measurement science, some argue that “it is only the de�nition of proba-
bility as a degree of belief that is applicable” (O’Hagan, 2014), while others argue
quite the opposite, “that the change from a frequentist treatment of measurement
error to a Bayesian treatment of states of knowledge is misguided” (White, 2016).
These foundational issues aside, it should be noted that the Bayesian procedure
implemented in the nicob enjoys two very important, practical advantages: (i) it
captures and propagates e�ectively the uncertainty surrounding the estimate of
the between-laboratory dispersion of measured values (𝜏) without resorting to
complex approximations, and (ii) it o�ers the means to express a priori knowl-
edge about either the value of 𝜏 or about the reliability of the uncertainty evalu-
ations produced by the participants in the study — a feature illustrated in Exam-
ple 4.3.

3.2.7 Linear Pool

The Linear Pool makes the fewest assumptions about the data, and tends to pro-
duce the largest evaluation of𝑢 (𝜇) and the widest coverage intervals. As already
noted above, in some cases the Linear Pool produces uncertainties that are quite
comparable, or possibly even smaller, than alternative procedures.
Its starting point is a set of 𝑛 probability distributions for the measurand, each
of which describes a state of knowledge about the measurand. Speci�cally, the
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probability distribution for laboratory 𝑗 = 1, . . . , 𝑛 has mean 𝑥 𝑗 and standard
deviation 𝑢 𝑗 . In the nicob, this distribution is chosen to be either a re-scaled and
shifted Student’s 𝑡 distribution (when the number of degrees of freedom 𝜈 𝑗 has
been stated and is �nite), or a Gaussian distribution (otherwise).
The 𝑛 probability distributions are aggregated by mixing using weights {𝑤 𝑗 },
to produce a consensus distribution whose mean is the consensus value, and
whose standard deviation is the standard uncertainty associated with the con-
sensus value. The weights represent the quality or reliability of the participating
laboratories or methods, as perceived by the person performing the aggregation.
Typically, a large sample of size 𝐾 is drawn from the mixture distribution of the
measurand by repeating the following process 𝐾 times: select a laboratory at
random, with probabilities proportional to the weights, and then draw a value
from the corresponding distribution.
The 𝐾 values obtained through this process are summarized in the same way
as the bootstrap sample for the DerSimonian-Laird procedure, or as the mcmc
sample drawn in the Bayesian procedure. Speci�cally, themean of these𝐾 values
is the consensus value, and the standard deviation is the associated standard
uncertainty. Exhibit 9 on Page 35 shows a smooth histogram of the results for
the default value 𝐾 = 106, the corresponding estimate of the measurand, and a
95 % coverage interval for its true value.

3.2.8 Degrees of Equivalence

The principal goal of some interlaboratory studies, key comparisons in particu-
lar, is not so much to produce a consensus value as to detect and identify mea-
surement results that deviate signi�cantly from the consensus value, or from one
another when considered in pairs.
In some interlaboratory studies, the consensus value used for these evaluations
is not derived from the measurement results of the participants. For example,
in key comparison CCQM-K1 (Alink et al., 1999), the consensus value was the
amount-of-substance fraction of each of several gas species in nitrogen that had
been determined gravimetrically by the pilot laboratory as it prepared the gas
mixtures for distribution to the participants.
In other cases, the consensus value is not even a meaningful physical quantity,
de�ned only as a convenient baseline for the inter-comparisons between labora-
tories. For example, in key comparison CCM.FF-K6.2011 (Benková et al., 2014)
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Exhibit 9: Probability density of the consensus value based on a sample of
size 𝐾 = 106 drawn from the equally weighted mixture of re-scaled and shifted
Student’s 𝑡 distributions assigned to the 𝑛 = 6 participating laboratories. The
large (blue) diamond marks the estimate of the consensus value, and the (red)
dots indicate the measured values. The (pink) shaded region under the curve
comprises 95 % of the area under the curve: its projection onto the horizontal
axis (red line segment) is a 95 % coverage interval for the measurand.

the consensus value was a weighted average of the relative errors in themeasure-
ment of the transfer standard, de�ned as relative di�erences between volumes of
gas indicated by the transfer standard and the corresponding volumes measured
by the reference (national) standard.
The goal of detecting and identifying measurement results that are signi�cantly
inconsistent with a reference or consensus value is paramount in pro�ciency

tests (Thompson et al., 2006), and in performance rankings of medical centers
(MacKenzie et al., 2015).
Key comparisons (KCs), which are de�ned in the Mutual Recognition Arrange-
ment (mra) (Comité International des Poids et Mesures (CIPM), 1999), include
both this goal and the goal of identifying pairs of measured values that di�er
signi�cantly from one another, because KCs serve to evaluate the intercompa-
rability of measurement results produced by di�erent national metrology insti-
tutes.
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In the context of KCs, the relevant comparisons are based on unilateral and bilat-
eral degrees of equivalence (DoE). Owing to the legal force of the mra that frames
KCs, there is less latitude for KCs than there is for studies done in other contexts
regarding how to de�ne the DoE. In fact, the mra is quite speci�c, stating in the
Technical Supplement to the Arrangement:

For the purposes of this arrangement, the term degree of equivalence of

measurement standards is taken to mean the degree to which a stan-

dard is consistent with the key comparison reference value. The de-

gree of equivalence of each national measurement standard is expressed

quantitatively by two terms: its deviation from the key comparison ref-

erence value and the uncertainty of this deviation (at a 95 % level of

con�dence). The degree of equivalence between pairs of national mea-

surement standards is expressed by the di�erence of their deviations

from the reference value and the uncertainty of this di�erence (at a

95 % level of con�dence).

— Comité International des Poids et Mesures (CIPM) (1999, T.3)

That is, the unilateral DoE are the pairs {(𝐷 𝑗 ,𝑈95 %(𝐷 𝑗 ))}, where 𝐷 𝑗 = 𝑥 𝑗 − 𝜇̂

and 𝑈95 %(𝐷 𝑗 ) denotes the associated expanded uncertainty for 95 % coverage
of the true di�erence, and the bilateral DoE are pairs {(𝐵𝑖 𝑗 ,𝑈95 %(𝐵𝑖 𝑗 ))}, where
𝐵𝑖 𝑗 = 𝐷𝑖 − 𝐷 𝑗 , and the {𝑈95 %(𝐵𝑖 𝑗 )} are the counterparts of the {𝑈95 %(𝐷 𝑗 )}. Note
that 𝐵𝑖 𝑗 need not equal 𝑥𝑖 − 𝑥 𝑗 : this will happen when the {𝐷 𝑗 } are replaced by
the {𝐷∗

𝑗 } that are de�ned below.
Occasionally, the measurement results for a participant in a KC are not used in
the computation of the consensus value. This may happen when a participant is
traceable to the SI via another participant, or when the participant deviated from
the protocol agreed for the comparison. But even in such cases the unilateral DoE
for the participant may be computed.
This suggests an alternative de�nition for the unilateral DoE that could be ap-
plied generally: based on the di�erence 𝐷∗

𝑗 = 𝑥 𝑗 − 𝜇̂− 𝑗 , where 𝜇̂− 𝑗 denotes an esti-
mate of the consensus value derived from the measurement results produced by
all the participants but leaving out the results from participant 𝑗 , for 𝑗 = 1, . . . , 𝑛.
Viechtbauer and Cheung (2010) have used this idea to identify outliers in meta-
analysis, and Duewer et al. (2014) have promoted it speci�cally for the evaluation
of degrees of equivalence in key comparisons.
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This alternative de�nition may then be carried forward and lead to an alternative
de�nition of the bilateral DoEs based on 𝐵∗𝑖 𝑗 = 𝐷∗

𝑖 − 𝐷∗
𝑗 (which generally di�ers

from 𝑥𝑖 − 𝑥 𝑗 ), for 1 6 𝑖 ≠ 𝑗 6 𝑛.
It may be argued that 𝐷∗

𝑗 is more accurate than 𝐷 𝑗 as an assessment of the “dis-
tance” between the value measured by laboratory 𝑗 and the values measured by
the other laboratories. In fact, 𝑥 𝑗 − 𝜇̂ may be too small in absolute value because
𝜇̂ incorporates (“tracks”) 𝑥 𝑗 . Furthermore, since 𝑥 𝑗 and 𝜇̂− 𝑗 are uncorrelated, this
alternative de�nition greatly simpli�es the evaluation of𝑈95 %(𝐷∗

𝑗 ).
The nicob o�ers the user the possibility of computing DoEs as de�ned in the
mra, or according to the leave-one-out strategy just described, both for unilateral
and bilateral DoEs corresponding to the three procedures available.
The question must also be answered as to whether, once their associated un-
certainties are taken into account, the {𝐷 𝑗 } and the {𝐵𝑖 𝑗 } (or the {𝐷∗

𝑗 } and the
{𝐵∗𝑖 𝑗 }) di�er signi�cantly from 0. The nicob follows guidance from Jones and
Spiegelhalter (2011) about how to identify participants with “unusual” results in
an interlaboratory study, in the sense that their measured values lie “beyond the
range allowed by the model”, as described in §A.5.
Exhibit 10 on Page 38 compares several versions of the unilateral DoE for the
PCB 28 measurement results that correspond to the three statistical procedures
implemented in the nicob. Exhibit 22 on Page 52 displays signi�cant bilateral
DoE in an interlaboratory study of the activity of radionuclide 60Co.
When the measurement results from one or more participants are left out of the
calculation of the consensus value, using the notation speci�ed in subsection 2.2,
the uncertainty associated with the unilateral DoE, for a participant thus left out,
includes contributions from: the uncertainty reported by the participant; the
uncertainty associated with the consensus value; the dark uncertainty estimated
from the results of the participants left in (if applicable).

4 Examples

4.1 Carotid Artery Stenosis

Carotid stenosis is the narrowing of the carotid artery that conveys freshly oxy-
genated blood to the brain, usually caused by the build up of plaque. When
fragments of plaque break o� and blood �ow carries them into the brain, they
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Exhibit 10: The red (DerSimonian-Laird), green (Bayes), and blue (Linear Pool)
dots, and line segments of matching colors, depict the unilateral DoE that cor-
respond to the three methods of data reduction implemented in the nicob: the
mra version in the top panel, and the Leave-One-Out version in the bottom
panel. The dots (in either panel), representing the {𝐷 𝑗 } (upper panel) and the
{𝐷∗

𝑗 } (in the lower panel), are not all at the same heights exactly, even if they
appear to be: in the mra version, their di�erences are attributable to di�erences
in the consensus values produced by the three procedures for data reduction.
The {𝐷∗

𝑗 } (in the lower panel) are generally larger in absolute value than the
corresponding {𝐷 𝑗 } (in the upper panel), and similarly for the expanded uncer-
tainties.
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may block smaller arteries and cause a stroke.
Carotid endarterectomy and carotid stenting are two procedures that may be
used to treat this condition. The former is the surgical removal of the plaque
deposits. The latter involves deployment of an expansible tube (stent) inside the
artery that mechanically widens the artery’s inner diameter.
The upper panel of Exhibit 11 on Page 40 lists the results of nine randomized
controlled clinical trials that Meier et al. (2010) selected and combined in a meta-
analysis, indicating the numbers of patients involved in each study, and the num-
bers of these that either su�ered a stroke or died within 30 days following the
procedure.

4.1.1 Log-Odds Ratios and Standard Uncertainties

The data are a set of nine 2×2 tables of counts: for example, forNaylor-1998, the
table is displayed in Exhibit 12 on Page 41. Before these data can be used in the
nicob, each 2× 2 table of counts needs to be reduced to a scalar summary of the
relationship between the probability of stroke or death and the two alternative
treatments. The log odds ratio is the summary that we shall use in this example,
and that we explain next. But �rst we point out that, regarded as a function
of random variables with binomial distributions (the counts 𝑘E and 𝑘S listed in
Exhibit 11 on Page 40, assuming that the counts 𝑛E and 𝑛S have been �xed by
design) the log-odds ratio has approximately a Gaussian distribution, hence the
models implemented in the nicob are adequate in principle.
Again for Naylor-1998, a naive estimate of the probability of stroke or death
among those who underwent endarterectomy is 𝑝E = 0/12 = 0. Its counterpart
for the group that underwent stenting is 𝑝S = 5/11. Therefore, the odds of stroke
or death are 𝑝E/(1− 𝑝E) = 0 in the endarterectomy group, and 𝑝S/(1− 𝑝S) = 5/6
in the stenting group. The corresponding odds ratio is the ratio of these two odds,
which equals 0, whose logarithm (log-odds ratio) is negative in�nity — obviously
problematic as potential input to the nicob.
Bayesian estimates of 𝑝E and 𝑝S are much more reasonable than the naive es-
timates above, especially when the number of cases of stroke or death is zero,
being of the form 𝑝E = (𝑘E + ½)/(𝑛E + 1), and similarly for 𝑝S. These estimates
are the means of the posterior distributions that correspond to the Je�reys prior
distribution for the probability of success in 𝑛E and 𝑛S binomial trials, respec-
tively. The posterior distribution for the probability of stroke or death in the
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study 𝑛E 𝑘E 𝑛S 𝑘S log(or) 𝑢 (log(or)) 𝜈or

Naylor-1998 12 0 11 5 −4.2670 2.3209 14
CAVATAS-2001 253 21 251 18 0.1585 0.3342 499

Brooks-2001 51 0 53 0 0.0393 3.1485 102
Brooks-2004 42 0 43 0 0.0211 3.1492 83

SAPPHIRE-2004/8 167 5 167 6 −0.1883 0.6150 330
EVA-3S-2006/8 262 9 265 24 −1.0290 0.4009 445
SPACE-2006 584 36 599 45 −0.2123 0.2316 1165

BACASS-2007 10 1 10 0 2.1059 2.4654 15
ICSS-2009 857 34 853 65 −0.6915 0.2175 1575

RE Model

−10.00 0.00 5.00

Log−Odds Ratio

ICSS−2009

BACASS−2007

SPACE−2006

EVA−3S−2006/8

SAPPHIRE−2004/8

Brooks−2004

Brooks−2001

CAVATAS−2001

Naylor−1998

1575

15

1165

445

330

83

102

499

14

 28.33%    −0.69 [ −1.12 , −0.27 ]

  0.61%     2.10 [ −2.73 ,  6.94 ]

 27.05%    −0.21 [ −0.67 ,  0.24 ]

 15.31%    −1.03 [ −1.82 , −0.24 ]

  8.14%    −0.19 [ −1.39 ,  1.02 ]

  0.38%     0.02 [ −6.15 ,  6.19 ]

  0.38%     0.04 [ −6.13 ,  6.21 ]

 19.11%     0.16 [ −0.50 ,  0.81 ]

  0.69%    −4.27 [ −8.81 ,  0.28 ]

100.00%    −0.41 [ −0.79 , −0.03 ]

Study νOR w log(OR) [95% CI]

Exhibit 11: top panel: Results of nine randomized, controlled trials comparing the in-
cidence of strokes among patients su�ering from carotid stenosis, and estimates of the
corresponding log-odds ratios, associated uncertainties, and degrees of freedom (last
three columns in the table). For each study, 𝑛E denotes the total number of patients that
underwent carotid endarterectomy, and 𝑘E denotes the number of these who su�ered a
stroke or died within 30 days following the procedure; 𝑛S and 𝑘S have similar meaning
for carotid stenting. bottom panel: The forest plot shows, forNaylor-1998, for example:
the number of degrees of freedom (14) underlying the standard uncertainty of the corre-
sponding log-odds ratio; the weight that the DerSimonian-Laird procedure assigned to
the result (2.84 %); the estimate of the log-odds ratio (−4.27); and an approximate, 95 %
coverage interval for the true log-odds ratio. The (red) diamond at the bottom indicates
the consensus value (−0.41) and associated uncertainty.
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stroke/death none

endarterectomy 0 12 12

stenting 5 6 11

5 18 23

Exhibit 12: Counts of outcomes of two alternative procedures to treat carotid artery
stenosis corresponding to the measurement results reported in Exhibit 11 on Page 40 for
Naylor-1998.

endarterectomy group is a beta distribution with shape parameters 𝑘E + ½ and
𝑛E − 𝑘E + ½, and similarly for the stenting group.
To evaluate the log-odds ratio and its standard uncertainty computed using Bayes
estimates of the relevant probabilities, we make a large number 𝐾 of draws from
these beta distributions (with 𝑛E and 𝑛S kept �xed at the values given), form
the corresponding log-odds ratios, and �nally compute the mean and standard
deviation of the resulting𝐾 values of the log-odds ratio. The means and standard
deviations obtained in this way, based on samples of size 𝐾 = 107 drawn from
the appropriate posterior distributions, are listed under log(or) and 𝑢 (log(or))
in Exhibit 11.
The last column in the upper panel of the same Exhibit lists the e�ective numbers
of degrees of freedom 𝜈or that the values of 𝑢 (log(or)) are based on, computed
using the Welch-Satterthwaite formula (Miller, 1986, Equation (2.44)), as sug-
gested by Taylor and Kuyatt (1994, §B.3). To load the data for this example into
the nicob, click here.

4.1.2 Results

The results listed in Exhibit 13 on Page 42 correspond to the estimates of the
log-odds ratios, and associated standard uncertainties and numbers of degrees
of freedom, listed in the last three columns of the upper panel of Exhibit 11.
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procedure consensus std. unc. 95 % cov. int.

DerSimonian-Laird −0.41 0.21 (−0.83, +0.012)
Hierarchical Bayesian −0.41 0.24 (−0.88, +0.066)

Linear Pool −0.46 2.35 (−6.34, +5.01)

Exhibit 13: Results of the three consensus building procedures implemented in the
nicob, for the log-odds ratio that compares the performance of carotid endarterectomy
and carotid stenting using the data compiled by Meier et al. (2010). The standard uncer-
tainty and coverage interval for DerSimonian-Laird were computed using the version
of the parametric statistical bootstrap described in §A.2, which includes consideration
for the small number of measurement results that the estimate of dark uncertainty 𝜏 is
based on.

4.2 Length of Gauge Blocks

Exhibit 14 on Page 43 lists the measurement results that were used in data reduc-
tions for tungsten carbide block 20-23289, of nominal length 1mm, in key com-
parison CCL-K1 conducted by the Consultative Committee for Length (CCL).
To load these results into the nicob, click here. The measurement results from
VNIIM and NIM are not listed in this Exhibit because they were not used by
CCL to compute the consensus value, for the substantive reasons explained by
Thalmann (2001, A2.4).
We do, in this manner, comply here with provision (P1) in §3. This should be
contrasted with the treatment that Cox (2007, 6.1) makes of the same data that
leads to the exclusion of the results from CENAM and VNIM, but not of the
results from NIM, based on purely statistical considerations. Cox (2007) also dis-
regarded the numbers of degrees of freedom supporting the {𝑢 𝑗 }. Toman and
Possolo (2009a,b, 2010) provide alternative analyses for the data from the same
key comparison.

4.2.1 Results

Exhibit 15 on Page 44 lists the results produced by the nicob for themeasurement
results in Exhibit 14.
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lab 𝐿 𝑢 (𝐿) 𝜈

OFMET 15.0 9.0 500
NPL 15.0 14.0 119
LNE 30.0 10.0 94
NRC 18.0 13.0 9
NIST 24.0 9.0 50

CENAM −9.0 7.0 72
CSIRO 33.0 9.0 205
NRLM 12.5 8.6 5
KRISS 8.8 10.0 55
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Exhibit 14: top panel: Di�erences 𝐿 between the measured length of tita-
nium carbide block 20-23289, and its nominal length of 1mm, and associated
standard uncertainties 𝑢 (𝐿), all expressed in nm. Rudolf Thalmann (metas,
Switzerland) kindly shared the numbers of degrees of freedom associated with
the laboratory-speci�c standard uncertainties. bottom panel: Measured dif-
ferences {𝐿 𝑗 } represented by the red dots, and {𝐿 𝑗 ± 𝑢 (𝐿 𝑗 )} represented by the
vertical blue line segments, for 𝑗 = 1, . . . , 9.
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procedure consensus std. unc. 95 % cov. int.

DerSimonian-Laird 15.7 5.1 (5.6, 25.8)
Hierarchical Bayesian 15.5 5.0 (6.1, 25.6)

Linear Pool 16.3 15.5 (−15.2, 44.7)

Exhibit 15: Results of the three consensus building procedures implemented in the
nicob, for the measurement results accepted for use in CCL-K1, pertaining to titanium
carbide block 20-23289, of nominal length 1mm. All values are expressed in nm. The
standard uncertainty and coverage interval for DerSimonian-Laird were computed us-
ing the version of the parametric statistical bootstrap described in §A.2, which includes
consideration for the small number of measurement results that the estimate of dark un-
certainty 𝜏 is based on.

4.3 Triple point of water

Exhibit 16 on Page 46 lists values of the di�erence Δ (de�ned more precisely be-
low), between a national reference cell for the triple point of water and the bipm
reference cell, and associated standard uncertainties, determined in the context
of key comparison CCT-K7 conducted by the Consultative Committee for Ther-
mometry (Stock et al., 2006, Table 19). To load the data for this example into the
nicob, click here.
This comparison aimed to achieve (i) “a direct comparison of high-quality water
triple point cells to quantify di�erences between cells”, and (ii) “a comparison
of the national realizations of the water triple point which served to calibrate
the transfer cells” (Stock et al., 2006, Pages 5–6). The value of the di�erence
Δ 𝑗 for laboratory 𝑗 was determined as a di�erence between two di�erences:
Δ 𝑗 = (𝑇bipm(transtd 𝑗 ) − 𝑇bipm(ref)) − (𝑇𝑗 (transtd 𝑗 ) − 𝑇𝑗 (ntlstd 𝑗 )), where
𝑇bipm(transtd 𝑗 ) denotes the value that the bipm measured for the transfer stan-
dard sent by laboratory 𝑗 , 𝑇bipm(ref) denotes “the temperature attributed to the
bipm reference group”, 𝑇𝑗 (transtd 𝑗 ) denotes the average of the two values of
temperature of the transfer standard that laboratory 𝑗 measured before and after
the transfer standard went to the bipm, and𝑇𝑗 (ntlstd 𝑗 ) denotes the temperature
of the national standard used by laboratory 𝑗 .
All the models o�ered in the nicob assume that, given the values of the underly-
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ing parameters, the measured values are like observed outcomes of independent
random variables. The fact that 𝑇bipm(ref) �gures in all of them challenges the
validity of such assumption in this case. The concern may be alleviated to some
extent by the understanding that the uncertainty associated with𝑇bipm(ref) may
be negligible by comparison with the uncertainties associated with all the other
measured values.
The situation (and the pattern of possibly induced correlations) is further com-
plicated by the fact that a least squares adjustment was applied to all the mea-
surement results made at the bipm (Stock et al., 2006, 4.3). We will ignore these
complications and proceed on the still questionable, aforementioned assumption
of independence.
It should be noted that all three data reduction procedures available in the nicob
can be generalized to accommodate correlations between values measured by
di�erent studies, even though they are not currently implemented in the nicob.
Chen et al. (2016) describes such generalization for the DerSimonian-Laird pro-
cedure. The modi�cation of the hierarchical Bayesian procedure involves using
a multivariate Gaussian distribution for the likelihood function, and application
of a copula (Nelsen, 1999; Possolo, 2010) would accomplish the same purpose for
the Linear Pool.

4.3.1 Results

The nicob results listed in Exhibit 17 on Page 47 correspond to the estimates of
the di�erenceΔ = 𝑇lab−𝑇bipm between a national reference cell for the triple point
of water and the bipm reference, and associated standard uncertainties, listed in
the upper panel of Exhibit 16.
Stock et al. (2006, Page 68) point out that “For this key comparison, the kcrv is

based on the mean value of the results from all of the participants, including some

laboratories who made corrections for the in�uence of chemical impurities and iso-

topic composition, and some who did not. The uncertainty of the kcrv is taken to

be the standard deviation of the mean of the data set. Because the distribution of

the pooled data is multimodal, care should be taken when using this quantity for

calculating con�dence intervals.”
The authors then explain that “it was decided not to use the propagated uncertain-
ties of the participants’ results because many of them are underestimated.” How-
ever, they do not o�er suggestions for how severe this underestimation may be.
The Bayesian procedure implemented in the nicob facilitates taking this type of
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lab Δ 𝑢 (Δ) lab Δ 𝑢 (Δ)

BIPM 0 44 NIST −40 33
BNM −54 66 NMIJ 54 151
CEM −14 41 NMi-VSL 16 55

CENAM −5 27 NPL 45 39
CSIR 105 74 NRC 85 23

CSIRO −29 34 PTB −14 56
IMGC −15 27 SMU 69 53
IPQ 40 160 SPRING 34 71

KRISS 69 56 UME −53 91
MSL 117 16 VNIIM 22 46
NIM 33 61
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Exhibit 16: top panel: Values of the di�erence Δ = 𝑇lab − 𝑇bipm between a
national reference cell for the triple point of water and the bipm reference cell,
and associated standard uncertainties, all expressed in µK. bottom panel: Mea-
sured di�erences {Δ 𝑗 } represented by the red dots, and {Δ 𝑗±𝑢 (Δ 𝑗 )} represented
by the vertical blue line segments.
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external information into account. Under the belief that the uncertainty evalua-
tions produce values that are too small, the median of the prior distribution for
the corresponding {𝜎 𝑗 }may be increased, andmultiple values tried, to determine
how in�uential this choice may be upon the �nal results.
We have considered three scenarios: �rst where the scale was set equal to the
median, 53 µK, of the reported laboratory-speci�c standard uncertainties {𝑢 𝑗 }
(which is the default choice in the nicob); second where the scale was set equal
to the largest of the {𝑢 𝑗 }, which is 160 µK; and third where it was set equal to
�ve times the median of the {𝑢 𝑗 }, at 265 µK. The corresponding estimates of
the consensus value, and the associated standard uncertainties, varied by about
0.1 µK in consequence, which suggests that, in this case at least, the results are
rather resilient to substantial misreporting of the laboratory-speci�c standard
uncertainties.

procedure consensus std. unc. 95 % cov. int.

DerSimonian-Laird 23 15 (−8, 53)
Hierarchical Bayesian 24 14 (−4, 52)

Linear Pool 22 84 (−140, 191)

Exhibit 17: Results of the three consensus building procedures implemented in the
nicob, for the di�erence Δ = 𝑇lab − 𝑇bipm between the national reference cells for the
triple point of water and the bipm reference, all expressed in µK. The standard uncer-
tainty and coverage interval for DerSimonian-Laird were computed using the version
of the parametric statistical bootstrap described in §A.2, which includes consideration
for the small number of measurement results that the estimate of dark uncertainty 𝜏 is
based on.

For these data, Stock et al. (2006) note: “It is instructive to look at the joint or

pooled probability distribution, calculated as the sum of the individual probability

distributions (Figure 29). The individual distributions were assumed as Gaussian.

The joint distribution looks like the superposition of a broader distribution centered

at −5 µK and a narrower distribution centered at 110 µK.” Exhibit 18 on Page 48
is the counterpart of Figure 29 of Stock et al. (2006), who suggest that the sec-
ondary peak at higher temperatures is attributable to measurements made by
laboratories that were able to apply corrections for deviations between the iso-
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topic composition of the water in their cells and the “isotopic composition of the

cell water from V-SMOW (Vienna Standard Mean Ocean Water, prepared by the

Atomic Energy Commission in Vienna).”
We imported into R the sample of 10 000 values drawn from the consensus value
by application of the Linear Pool, and �tted amixture of Gaussian distributions to
it, using R function normalmixEM de�ned in package mixtools (Benaglia et al.,
2009). The Bayesian Information Criterion (BIC) for model selection suggested
that the best model should have three components (Burnham and Anderson,
2002), which are depicted in Exhibit 18 on Page 48. The two components with
smallest standard deviations are centered at −2 µK (accounting for 59 % of the
unit of probability) and 102 µK (accounting for 17 % of the unit of probability),
and they determine the more salient characteristics of the distribution.
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Exhibit 18: The thick (blue) line delineates the probability density of the re-
sult of linearly pooling Gaussian probability distributions with means {𝐴 𝑗 } and
standard deviations {𝑢 (𝐴 𝑗 )}. The thin (blue) lines are scaled to one-half the
scale of the vertical axis.

4.4 Activity of Radionuclide 60Co
60Co is a synthetic radioactive isotope of cobalt whose atoms have nuclei with
33 neutrons and 27 protons. Its half-life is 5.2711 years, decaying to stable 60Ni
by emission of a beta particle and highly energetic gamma rays (releasing about
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20W per gram of the radioisotope). 60Co is widely used for sterilization of med-
ical instruments, fruit, etc., and for cancer radiotherapy.
The upper panel of Exhibit 19 on Page 50 lists measurement results for the In-
ternational Reference System (sir) equivalent activity (Michotte, 2002) of 60Co
produced by 19 laboratories, as reported in the bipm Key Comparison Database
(KCDB, http://kcdb.bipm.org) for ongoing key comparison BIPM.RI(II)-K1.Co-
60 (Ratel et al., 2003a,b; Ratel andMichotte, 2003; Ratel et al., 2006; Michotte et al.,
2010). To load these measurement results into the nicob, click here.

4.4.1 Results

The results listed in Exhibit 21 on Page 51 correspond to the measurement results
listed in the top panel of Exhibit 19. Exhibit 20 shows the probability density that
represents the result of linearly pooling (that is, mixing) distributions assigned
to the participating laboratories.

4.5 Radiofrequency Power Sensor

Exhibit 23 on Page 53 lists measurement results from key comparison CCEM.RF-
K25.W (Judaschke, 2014, 2015), of the calibration factor 𝜂cal at 33GHz, for a
commercial, temperature-compensated thermistor power sensor that circulated
among the participants. To load these results into the nicob, click here. The
calibration factor is the proportion of the true power of the radiofrequency sig-
nal that the sensor actually measures, hence it is a dimensionless quantity with
values typically between 0 and 1.
In the original study, the measurement result from nmia (Australia), which is
not listed in Exhibit 23, was not used in the computation of the key comparison
reference value (kcrv) because the value measured by this institute is traceable
to the international system of units (si) (BIPM, 2006) through another participant.
The original study also excluded the measurement result from nrc (Canada) be-
cause a statistical criterion described by Randa (2005) identi�es it as an outlier,
and computed the kcrv as the arithmetic average 0.8184 of the seven remain-
ing measured values, with associated standard uncertainty 0.0028. We have in-
cluded the Canadian result in our analysis, and in the end conclude that the cor-
responding unilateral degree of equivalence, evaluated by all three procedures
implemented in the nicob, does not di�er signi�cantly from zero (Exhibit 23).
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lab 𝐴 𝑗 𝑢 (𝐴 𝑗 ) date lab 𝐴 𝑗 𝑢 (𝐴 𝑗 ) date

kBq kBq

LNMRI 7077 8 1984-11-21 PTB 7057 16 2001-07-02
ENEA 7065 26 1991-01-22 NMISA 7098 16 2002-05-30
ANSTO 7056 10 1992-05-13 CNEA 7050 15 2003-01-17
KRISS 7047 22 1995-01-18 RC 7040 40 2003-06-17
MKEH 7051 18 1999-06-11 NMIJ 7050 8 2004-03-17
LNE-LNHB 7060 4 1999-10-20 IRMM 7039 17 2005-01-27
CIEMAT 7090 11 1999-11-30 IFIN-HH 7101 24 2007-05-10
NPL 7053 21 2000-06-30 NIST 7083 14 2007-08-07
IRA 7037 8 2000-12-06 BEV 7057 17 2007-09-28
BARC 7099 46 2001-01-10
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Exhibit 19: top panel: Measurement results for the SIR equivalent activity of
60Co. bottom panel: The large (red) dots represent the values of activity {𝐴 𝑗 }
measured by the participating laboratories; the vertical (blue) line segments
depict the intervals {𝐴 𝑗 ± 𝑢 (𝐴 𝑗 )}.
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Exhibit 20: The thick (blue) line delineates the probability density that rep-
resents the result of linearly pooling Gaussian probability distributions with
means {𝐴 𝑗 } and standard deviations {𝑢 (𝐴 𝑗 )} that represent the states of knowl-
edge of the 19 participating laboratories about the true SIR equivalent activity
of 60Co. The thin (blue) lines are scaled to one-half the scale of the vertical axis.

procedure consensus std. unc. 95 % cov. int.

DerSimonian-Laird 7062 4 (7053, 7071)
Hierarchical Bayesian 7062 5 (7053, 7072)

Linear Pool 7064 29 (7012, 7127)

Exhibit 21: Results of the three consensus building procedures implemented in the
nicob, for the SIR equivalent activity of 60Co. The standard uncertainty and coverage
interval for DerSimonian-Laird were computed using the version of the parametric sta-
tistical bootstrap described in §A.2, which includes consideration for the small number
of measurement results that the estimate of dark uncertainty 𝜏 is based on.
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Exhibit 22: The yellow squares with an asterisk inside indicate 𝐵𝑖 𝑗 that di�er
signi�cantly from 0 in the sense that the interval𝐵𝑖 𝑗±𝑈95 %(𝐵𝑖 𝑗 ) does not include
0.

Cochran’s𝑄-test of homogeneity yields a 𝑝-value of 0.59, therefore not suggest-
ing heterogeneity. Hoaglin (2016) points out several shortcomings of this test.
However, the criterion described by Randa (2005) can be criticized because it ne-
glects the uncertainties associated with the measured values. In any case, prin-
ciple (P1) from §3 rules out the practice of excluding measured values from the
calculation of the kcrv based on statistical criteria alone.
The DerSimonian-Laird procedure, as implemented in the nicob and applied to
all eight measurement results listed in Exhibit 23, estimates the kcrv as 0.8192,
with associated standard uncertainty 0.0022, and a 95 % coverage interval ranging
from 0.8147 to 0.8235 (where the standard uncertainty and the coverage interval
were obtained by application of the parametric bootstrap).
Exhibit 24 on Page 54 lists the results of data reductions from the �nal report
of the key comparison, and those produced by the nicob. The close agree-
ment between the unilateral degrees of equivalence (computed as de�ned in the
mra) produced by the DerSimonian-Laird and Bayesian procedures is particu-
larly striking. The Linear Pool produces considerably larger uncertainty evalua-
tions than the other two procedures. Still, none of the three procedures suggests
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lab 𝜂cal 𝑢 (𝜂cal)

KRISS 0.8247 0.0095
LNE 0.8184 0.0112
NIM 0.8196 0.0033
NIST 0.8170 0.0070
NPL 0.8069 0.0072
NRC 0.8355 0.0130
PTB 0.8186 0.0038

VNIIFTRI 0.8236 0.0058
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Exhibit 23: top panel: Measurement results for the calibration factor 𝜂cal
of traveling standard SN 216 used in key comparison CCEM.RF-K25.W. bot-
tom panel: The large (red) dots represent the values measured by the par-
ticipating laboratories; the vertical (blue) line segments depict the intervals
{𝜂cal, 𝑗 ± 𝑢 (𝜂cal, 𝑗 )}.
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a signi�cant discrepancy for the measurement results from nrc.

procedure consensus std. unc. 95 % cov. int.

CCEM.RF-K25.W 0.8184 0.0028
DerSimonian-Laird 0.8192 0.0022 (0.8147, 0.8235)

Hierarchical Bayesian 0.8192 0.0022 (0.8192, 0.8239)
Linear Pool 0.8205 0.0112 (0.7993, 0.8471)
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Exhibit 24: top panel: Results of the three consensus building procedures implemented
in the nicob for the calibration factor 𝜂cal of traveling standard SN 216 used in key
comparison CCEM.RF-K25.W. The standard uncertainty and coverage interval for the
DerSimonian-Laird procedure were computed using the version of the parametric sta-
tistical bootstrap described in §A.2, which includes consideration for the small number
of measurement results that the estimate of dark uncertainty 𝜏 is based on. bottom
panel: Unilateral degrees of equivalence as de�ned in the mra corresponding to the
DerSimonian-Laird, Bayesian, and Linear Pool procedures.
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4.6 Lead in Lead-Free Solder

Exhibit 25 on Page 56 lists measurement results from key comparison CCQM-K88
(Hioki et al., 2013), was organized by the Inorganic Analysis Working Group of
CCQM to evaluate the capabilities of the nationalmetrology institutes tomeasure
the mass fraction of lead in lead-free solder containing silver and copper.
The participants were allowed to use any suitable measurement methods, but
the IAWG later decided that only results obtained by application of IDMS or ID-
TIMS would be used to compute the key comparison reference value (KCRV) and
to evaluate the associated uncertainty. Therefore, the results from INMETRO,
VNIIM, INTI, NIST, and NRC were left out of these calculations, but their DoEs
still were evaluated.
Cochran’s𝑄 test (Cochran, 1954) yielded a 𝑝-value of 0.1, thus suggesting that the
�ve results contributing to the KCRVweremutually consistent. The test of distri-
butional symmetry proposed by Miao et al. (2006) yields a 𝑝-value of 0.9, and the
Shapiro-Wilk test of Gaussian shape, applied to the {(𝑤 𝑗 (Pb) −𝑀)/𝑢 (𝑤 𝑗 (Pb))},
where 𝑀 denotes median of the {(𝑤 𝑗 (Pb)}, yields a 𝑝-value of 0.13. Therefore,
the weighted average is a reasonable choice for the KCRV.
Since the DerSimonian-Laird procedure reverts to the conventional weighted av-
erage when it estimates 𝜏 to have magnitude zero, we will employ it is this case.
However, the estimate of 𝜏 turns out to be 0.7mg/kg, hence of the same order
of magnitude as the reported uncertainties, which implies that the DerSimonian-
Laird procedure, instead of being the conventionalweighted average, is aweighted
average modulated by this estimate of 𝜏 .
Exhibit 25 on Page 56 also depicts the KCRV, 197.5mg/kg, and the associated
uncertainty, evaluated using the parametric bootstrap, is 0.9mg/kg. A 95% cov-
erage interval for the true mass fraction of lead in the material ranges from
195.6mg/kg to 199.4mg/kg.
Exhibit 26 on Page 57 lists the unilateral DoEs that correspond to theDerSimonian-
Laird procedure, and their counterparts reported by Hioki et al. (2013), whose
choice for the KCRV was the median of the values measured by the �ve labora-
tories that employed either IDMS or ID-TIMS.
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lab 𝑤 𝑈 (𝑤) kcrv lab 𝑤 𝑈 (𝑤) kcrv

mg/kg mg/kg

NIM 195.8 2.6 yes INMETRO 179 4 no
NMIJ 196.7 1.52 yes VNIIM 194.2 10 no
KRISS 197.2 2 yes INTI 199 4 no
PTB 197.9 1.9 yes NIST 199.43 0.7 no
BAM 198.29 0.5 yes NRC 202.4 18.6 no

Consensus estimate, µ̂, and interval µ̂ ± u(µ)
Measured value, xj
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Exhibit 25: top panel: Measurement results from CCQM-K88, Mass Fraction
of Lead in Lead-Free Solder, also indicating whether each result was included
in the calculation of the key comparison reference value (KCRV) or not, in the
column headed kcrv. bottom panel: The large (red) dots and open circles
represent the values of the mass fraction of lead measured by the participating
laboratories; the vertical (blue) line segments depict the intervals {𝑤 𝑗 (Pb) ±
𝑢 (𝑤 𝑗 (Pb))}. The horizontal (green) line marks the KCRV based on the results
corresponding to the (red) dots, and the (pale green) band represents the KCRV
plus or minus one standard uncertainty. The NIST Consensus Builder reorders
the participants so that those included in the calculation of the KCRV appear
on the left side of the plot, and those excluded from it appear on the right side,
regardless of the order in which they are speci�ed in the “Enter data” page.
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dl final report
lab 𝐷 𝑈95 % (𝐷) 𝐷 𝑈95 % (𝐷)

NIM −1.69 2.73 −1.40 2.75
NMIJ −0.79 1.89 −0.50 1.77
KRISS −0.29 2.24 0.00 2.19
PTB 0.41 2.16 0.70 2.10
BAM 0.80 1.54 1.09 1.03
INMETRO −18.50 4.26 −18.20 4.10
VNIIM −3.29 9.94 −3.00 10.04
INTI 1.51 4.26 1.80 4.10
NIST 1.94 1.81 2.23 1.14
NRC 4.91 18.31 5.20 18.62

DoE estimate and 95% coverage interval
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Exhibit 26: top panel: Unilateral DoEs corresponding to the DerSimonian-Laird pro-
cedure implemented in the NIST Consensus Builder, and reported by Hioki et al. (2013).
bottom panel: Depiction of the unilateral DoEs corresponding to the DerSimonian-
Laird procedure, where the (black) dots represent the di�erence between measured val-
ues and KCRV, and the vertical line segments represent this di�erence plus or minus the
associated expanded uncertainty.
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5 Advisory

The nicob ought not be misconstrued as a toolbox capable of addressing all the
needs of data reductions arising in the context of interlaboratory studies or inter-
method comparisons.
Quite the contrary: even a cursory examination of Final Reports of key com-
parisons available in the bipm Key Comparison Database (kcdb, http://kcdb.
bipm.org), or of articles in medical journals describing meta-analyses, reveals
that most data reductions done in these contexts require customized treatments
that only a statistician, biostatistician, or applied mathematician can give, who
is committed to learning about and understanding the substantive issues, and
willing to work collaboratively with scientists or medical doctors.
A common occurrence that renders the nicob inapplicable is temporal drift in the
value of the measurand in the course of the interlaboratory study (Zhang, 2012).
This often arises when the study requires that a physical artifact be circulated
and some attribute of it measured by the participating laboratories in turn. Unless
this drift can be reliably corrected for, and the resulting uncertainty quanti�ed,
the nicob a�ords no built-in means to address this type of situation.
We have pointed out already (in §3) that the nicob is not suitable for the reduc-
tion of data from pro�ciency tests (Thompson et al., 2006) because these typically
involve a reference value that is not a consensus value derived from the partici-
pants’ measurement results, and also because the data reductions for such tests
usually produce several performance metrics that the nicob does not evaluate.
We have also pointed out in §3.2.5 that in many cases encountered in practice
there is considerable a priori information about the measurand, or about other
parameters in the model, but that taking such information into account requires
a custom solution that the nicob is unable to provide, except to the limited extent
that it a�ords to tune the hyper-parameters governing the prior distributions for
𝜏 and for the {𝜎 𝑗 }.
In some key comparisons there is a di�erent reference value for each laboratory:
for example, when di�erent laboratories measure amount-of-substance fractions
of the same gas in mixtures nominally of the same composition but prepared sep-
arately from one another, or degrading over time di�erently from one another, as
in CCQM-K90 (formaldehyde in nitrogen). The nicob cannot address the chal-
lenges posed by these, either.
In many cases, the least that needs to happen before the nicob can be used is
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some suitable pre-processing of the data observed in an interlaboratory study
or gathered for a meta-analysis. The example presented in §4.1 illustrates an
instance of this need.
In other cases, the nicob should simply not be used at all because there is a
fundamental mismatch between the structure of the experimental data and the
assumptions underlying the statistical methods implemented in the nicob. The
mere fact that a table in a journal article or technical report lists measurement
results in a form that appears suitable for use in the nicob, is not su�cient reason
to employ any of the statistical models and methods that it o�ers.
One such case is key comparison CCT-K4, conducted by the Consultative Com-
mittee for Thermometry (cct), to compare local realizations of the ITS-90 tem-
perature scale using aluminum and silver freezing-point cells (Nubbemeyer and
Fischer, 2002). Table 8 in the corresponding Final Report lists 12 di�erences
𝑇lab − 𝑇mc, and associated standard uncertainties, between the temperature of
the freezing point of silver measured by a participating laboratory, and the corre-
sponding temperature measured by the pilot laboratory on a circulating, master
�xed-point cell.
Cox (2007) used this data set to illustrate the concept of largest consistent subset.
At �rst blush, these data, depicted in Exhibit 27 on Page 60, seem to be begging
for analysis using the nicob or some comparable othermeans. However, yielding
to such temptation would be inappropriate because none of the models available
in the nicob are suitable.
The reason is that each of the di�erences is a linear combination (with coef-
�cients that vary from laboratory to laboratory) of the same set of other di�er-
ences (between temperatures of two �xed-point cells) that were measured by the
participating laboratories on di�erent occasions in the course of the experiment.
Thus, the random variables used to model the di�erences in Table 8 are corre-
lated to an extent that the Final Report does not consider, and that the nicob is
not equipped to recognize or address. There are, however, versions of the ran-
dom e�ects model that can take the web of correlations pervading the data in
this example into account, for example as implemented in R package mvmeta
(Gasparrini, 2012).
The Final Report reveals that the cct did not reach unanimity about whether a
consensus value (kcrv) should be computed, and that a vote was taken to adjudi-
cate the matter. The majority were inclined to compute the kcrv (as a particular
weighted average), but the Final Report notes that “The kcrv has no physical
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Exhibit 27: top panel: Measurement results from CCT-K4, given in Nubbemeyer
and Fischer (2002, Table 8), where Δ = 𝑇lab − 𝑇mc is the di�erence between the
temperature of the freezing point of silver measured by a participating laboratory,
and the corresponding temperature measured by the pilot laboratory on a circu-
lating, master �xed-point cell. The value for PTB, which was the pilot, is 0mK by
construction. bottom panel: Probability distribution for the consensus value, ob-
tained by linearly pooling, and interval of values of Δ (thick, horizontal red line) that
is the projection of the (pink) region that encompasses 95 % of the area under the
(blue) curve. As noted in the text, none of the methods implemented in the nicob
are suitable for reducing these data.
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meaning and is used only as a notational shorthand for presenting a common
baseline against which all laboratory values can be compared” (Nubbemeyer and
Fischer, 2002, Page 25).
Members in the minority o�ered explanations for their opposition to computing
a kcrv, which the same Final Report also records, and that provide informative
insights into some of the challenges in statistical modeling and data analysis that
no set of �xed “recipes” (for example as are implemented in the nicob) is likely
to be able to address successfully.
This was the objection raised by NIST (Nubbemeyer and Fischer, 2002, 5.3.2):

In order to make valid comparisons in a key comparison in which di�er-

ent laboratories have made measurements using non-identical transfer

standards, the data must �rst be normalized to a common basis. The

normalization of the data usually introduces di�erent levels of uncer-

tainty and correlations between di�erent laboratories’ results, which

complicates the computation of the uncertainties of the pair-wise dif-

ferences between the laboratories. Under these conditions, which are

present in KC4 (and KC3), determination of the uncertainties usually

requires the use of a variance-covariance matrix (or equivalent non-

matrix calculations) to be used in determining the bilateral di�erence

uncertainties. Therefore, unless the uncertainties and correlations in-

troduced by the normalization of the data to accommodate the use of

di�erent transfer instruments happens to be the same for all compar-

isons between laboratories, the kcrv approach to expressing the degree

of equivalence cannot be easily implemented in the usual way.

Another dissenting voice (on the appropriateness of computing a consensus value
for CCT-K4) arose from nrc (Canada), expressing a di�erent reason for concern
about the computation of a consensus value:

Why am I against the calculation of a kcrv? Basically, I see the K4

results as a failure to demonstrate compatibility amongst the world’s

best laboratories. Clearly, much work needs to be done if we wish to

achieve such interoperability. It is disconcerting that the identi�cation

of the failing laboratories is so sensitive to the method used to calculate

the kcrv. This represents, to me, a su�cient technical reason to avoid

de�ning a kcrv.

nicob 2020 nov 12 61 / 85



Albeit indirectly, the remark relates to the presence of dark uncertainty, already
mentioned in §3, whereby the dispersion or scatter of measured values is much
larger than what the stated, laboratory-speci�c uncertainties can account for.
The laboratory random e�ects model discussed in Appendix A provides an e�ec-
tive framework to address this challenge, even if it does not, by itself, solve the
fundamental scienti�c problem that induces the observed heterogeneity. How-
ever, by identifying and quantifying this heterogeneity (in an estimate of the
between-laboratory standard deviation that we have been calling 𝜏), a �ag is
raised signaling the need for a solution of the underlying scienti�c or technical
problem.
Interestingly, nrc quali�ed their objections by presenting the probability distri-
bution for the di�erence Δ = 𝑇lab−𝑇mc that results from equally-weightedmixing
of Gaussian probability distributions with means equal to the measured di�er-
ences {Δ 𝑗 }, and standard deviations equal to the corresponding {𝑢 (Δ 𝑗 )}. This
is the same as linearly pooling (§A.4), even though in this case it would neglect
those correlations. Since the mixture distribution is bimodal (Exhibit 27), nrc
concluded that a consensus value would be meaningless. When the Linear Pool
in the nicob is applied to this data, it produces a 95 % coverage interval (suppos-
edly for the true value of the consensus value), that is so wide that it covers all
12 measured values of Δ. If the correlations were taken into account, then this
interval likely would be wider still.

6 Implementation

The implementation of the nicob has been donemostly in R (R Core Team, 2015),
given R’s �tness for purpose, wealth of specialized functionality, and univer-
sal availability. We leveraged these resources as deployed in packages metafor
(Viechtbauer, 2010) for the DerSimonian-Laird procedure, and in R2jags (Su and
Yajima, 2015) for the Bayesian procedure, which employs jags, a computer pro-
gram for the analysis of Bayesian hierarchical models usingMarkovChainMonte
Carlo sampling (Plummer, 2015).
The codes for the parametric bootstrap, for drawing samples from the approx-
imate sampling distribution of the estimate of 𝜏 , and for the degrees of equiva-
lence, were developed speci�cally for the nicob.
To make the application accessible to users with no knowledge of R we have
created an easy-to-use graphical user interface displayed in a web browser em-

nicob 2020 nov 12 62 / 85



ploying facilities provided by the R package shiny (Chang et al., 2016). NIST
hosts the nicob at https://consensus.nist.gov.
The app is served through ShinyProxy to secure the tra�c with TLS encryption
and allow for concurrent users. ShinyProxy is a Java web-server which spawns
an instance of the nicob in a docker container for each user. The source code,
as well as the docker image, are available at this public repository: https://
github.com/tlafarge/NICOB_app_public.

A Appendix: Statistical Procedures

This section provides details of the statistical models and methods implemented
in the nicob, and discusses the conditions under which they are expected to
produce valid results. The three procedures made available in this version of
the nicob have a long history of usage and a proven track record of reliable
performance. They are not, however, interchangeable, and generally one should
be chosen that seems most adequate for the data in hand, and best �t for the
purpose that the analysis is intended to serve.
A large collection of statistical procedures for the analysis of results from in-
terlaboratory studies is available. In March 2016, there were about one dozen
R packages available on the Comprehensive R Archive Network (cran) o�ering
functions for such analyses. Therefore, our selection of only three among this
multitude of procedures may be easily challenged.
We selected no more than three because o�ering the user a large set of alterna-
tives risks devolvingmodel selection into something akin to tasting the 48 �avors
of Rick’s Rather Rich Ice Cream (Palo Alto, CA), until one �nds the results that
one likes best — a deplorable, if common, manifestation of statistical malpractice.
We selected no fewer than three because we wish to encourage the user to enter-
tain models and sets of assumptions that are clearly di�erent from one another,
in hopes that at least one of the three will be appropriate for the data in hand
and will produce results that are �t for purpose.

• We selected the DerSimonian-Laird procedure (§A.2) because it is used
most often in practice, in particular in medical meta-analysis, which ac-
counts for the bulk of the interlaboratory studies performed each year, and
because it makes fewer assumptions about the nature of the data than the
hierarchical Bayesian procedure.
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• We selected a hierarchical Bayesian procedure (§A.3) because it allows the
expression of a modicum of prior knowledge about uncertainty compo-
nents that typically are di�cult to evaluate reliably, and because it takes
into account, without special “add-ons”, the uncertainty surrounding the
estimate of 𝜏 .

• We selected the Linear Pool (§A.4) due to its longevity and because it makes
the fewest assumptions about the nature of the data.

Furthermore, the key motivating ideas behind all three are fairly easy to ex-
plain in non-technical terms. Since random e�ects models underlie both the
DerSimonian-Laird and the hierarchical Bayesian procedure, §A.1 explains the
di�erence between random and �xed e�ects models, and reviews the reasons
why we favor the former over the latter, for general use in the reduction of data
from interlaboratory studies and from inter-comparisons of alternative measure-
ment methods. The approaches implemented in the nicob for the evaluation of
degrees of equivalence are explained in §A.5.

A.1 Random versus Fixed E�ects

Three di�erent models are frequently used (and often confused) for values mea-
sured in interlaboratory studies: (i) random e�ects models; (ii) �xed e�ects mod-
els; and (iii) common mean or �xed e�ect (note the singular) models, de�ned as
follows.

Random E�ects 𝑥 𝑗 = 𝜇 + 𝜆 𝑗 + 𝜀 𝑗 , where 𝜇 denotes an unknown constant, and
𝜆 𝑗 and 𝜀 𝑗 are values of non-observable random variables, for 𝑗 = 1, . . . , 𝑛,
the former with mean 0 and common variance 𝜏2, the latter with mean 0
and possibly di�erent variances 𝜎21 , . . . , 𝜎2𝑛 .

Fixed E�ects 𝑥 𝑗 = 𝜃 𝑗+𝜀 𝑗 , where𝜃 𝑗 denotes an unknown constant and 𝜀 𝑗 denotes
the value of a non-observable random variable with mean 0 and variance
𝜎2𝑗 , for 𝑗 = 1, . . . , 𝑛.

Common Mean (Fixed E�ect) 𝑥 𝑗 = 𝜇 + 𝜀 𝑗 , where 𝜇 denotes an unknown con-
stant and 𝜀 𝑗 denotes the value of a non-observable random variable with
mean 0 and variance 𝜎2𝑗 for 𝑗 = 1, . . . , 𝑛.
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Both the DerSimonian-Laird procedure and the hierarchical Bayesian procedure
are based on random e�ects models. These models are appropriate when one
wishes to derive lessons from an interlaboratory study that will be applicable
to laboratories similar to those that have participated in the study, or when one
must recognize between-laboratory di�erences as a source of measurement un-
certainty, hence very broadly indeed (Mandel, 1964; Mandel and Paule, 1970).
Entertaining a �xed e�ects model where the {𝜃 𝑗 } are di�erent from one another
is tantamount to admitting that the di�erent laboratories are measuring di�erent
quantities owing to persistent e�ects (biases) that do not average out as each
laboratory replicates its measurements. In such circumstances, no consensus
value can be meaningful.
Only when the {𝑥 𝑗 } have a common expected value 𝜇 is there a meaningful con-
sensus value, and this happens only for the random e�ects model and for the
common mean model. And among these two, the former should be preferred, as
Borenstein et al. (2010, Page 107) argues:

“If we were going to use one model as the default, then the random-
e�ects model is the better candidate because it makes less stringent
assumptions about the consistency of e�ects. Mathematically, the
�xed-e�ect model is really a special case of the random-e�ects model
with the additional constraint that all studies share a common e�ect
size. To impose this constraint is to impose a restriction that is not
needed, not proven, and often implausible.”

A.2 DerSimonian-Laird

The DerSimonian-Laird (§A.2) and the Bayesian hierarchical (§A.3) procedures
implement a random e�ects model that expresses each measured value as an ad-
ditive superposition of three elements: 𝑥 𝑗 = 𝜇 + 𝜆 𝑗 + 𝜀 𝑗 , for each of 𝑗 = 1, . . . , 𝑛
laboratories, where 𝜇 is the measurand, the {𝜆 𝑗 } denote laboratory (or, method)
e�ects, and the {𝜀 𝑗 } represent measurement errors. (The Linear Pool is based on
a di�erent model, which will be discussed in §A.4.)
The random variables that the {𝜆 𝑗 } represent are assumed to be independent
and to have mean 0 and standard deviation 𝜏 > 0. These assumptions mean that,
taken collectively, the measured values are unbiased (that is, are centered on 𝜇).
When 𝜏 = 0, the measurement results are said to be homogeneous (or, mutually
consistent) — in such case, the DerSimonian-Laird procedure reduces to Proce-
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dure A of Cox (2002). Even if the results are homogeneous, the evaluation of the
uncertainties associated with the consensus value and the degrees of equivalence
(§A.5) performed by the nicob is far more sophisticated and realistic than what
Cox (2002) describes for the reasons given below.
The measurement errors are assumed to be realized values of independent ran-
dom variables with mean 0, but possibly di�erent standard deviations {𝜎 𝑗 }. The
standard measurement uncertainties {𝑢 𝑗 } are assumed to be equal to the {𝜎 𝑗 }
onlywhen they are based on in�nitelymany degrees of freedom. TheDerSimonian-
Laird procedure (DerSimonian and Laird, 1986; Whitehead andWhitehead, 1991)
treats the uncertainties associated with the measured values as known constants
(that is, based on in�nitely many degrees of freedom). This assumption is un-
warranted in most cases.
However, when the standard uncertainties that are used as inputs are quali�ed
with numbers of degrees of freedom, then the nicob takes them into account
when it evaluates uncertainty using the parametric statistical bootstrap. The
Bayesian procedure does likewise to some extent even when numbers of degrees
of freedom are not reported.
The consensus value, which estimates 𝜇, is a weighted average of the values
measured by the participating laboratories, 𝜇̂ =

∑𝑛
𝑗=1𝑤 𝑗𝑥 𝑗/

∑𝑛
𝑗=1𝑤 𝑗 , with weights

𝑤 𝑗 = 1/(𝜏2 + 𝜎2𝑗 ) for 𝑗 = 1, . . . , 𝑛. Since 𝜏 is unknown, it is replaced by a method-
of-moments estimate: 𝜏2DL = max{0, 𝜏2M}, where 𝜏

2
M = (𝑄 − 𝑛 + 1)/(∑𝑛

𝑗=1𝑢
−2
𝑗 −∑𝑛

𝑗=1𝑢
−4
𝑗 /∑𝑛

𝑗=1𝑢
−2
𝑗 ), and 𝑄 =

∑
𝑢−2𝑗 (𝑥 𝑗 − 𝜇̂)2. The {𝑢 𝑗 } replace the {𝜎 𝑗 } that

usually �gure in the expression for 𝜏 .
The approximate standard uncertainty associated with the consensus value is
𝑢DL(𝜇) =

√
1/∑𝑛

𝑗=1𝑤 𝑗 (Higgins et al., 2009). The presence of 𝜏2 in the denomi-
nator of the weights {𝑤 𝑗 } acts as a moderating in�uence, preventing very small
laboratory-speci�c uncertainties from in�uencing the consensus value to an ex-
tent that is often found to be objectionable when conventional weighted averages
are used, as in Procedure A of Cox (2002).
The nicob o�ers two, more accurate alternatives to this approximation: one sug-
gested by Knapp and Hartung (2003), the other made possible by technology de-
veloped by Biggersta� and Tweedie (1997) and Biggersta� and Jackson (2008).
However, Hoaglin (2016) warns that, although improving on naive evaluations,
these alternatives still rely on the typically unrealistic assumption that 𝑢 𝑗 = 𝜎 𝑗 ,
which is particularly harmful when the number of participating laboratories is
small (say, less than 10). These concerns are mitigated by the parametric boot-
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strap option that the nicob o�ers for uncertainty evaluation, even though this
involves additional assumptions.
In the DerSimonian-Laird procedure, neither the estimate of the measurand, nor
the (naive) corresponding uncertainty evaluation 𝑢DL(𝜇), depend on any spe-
ci�c distributional assumption about the laboratory e�ects or the measurement
errors, provided that they are independent and all have �nite variances. In par-
ticular, the {𝑥 𝑗 } are not assumed to be outcomes of Gaussian random variables.
The DerSimonian-Laird procedure, and the Knapp-Hartung adjustment, are im-
plemented in the nicob via R function rma de�ned in package metafor (Viecht-
bauer, 2010). The version of the parametric bootstrap that we have developed
and implemented recognizes the typically small number of degrees of freedom
supporting the estimate of 𝜏 along lines suggested by Biggersta� and Tweedie
(1997) and Biggersta� and Jackson (2008).
To approximate the distribution of 𝜏2, Biggersta� and Tweedie (1997) derive the
exact mean and variance of Cochran’s𝑄 statistic. From these, the distribution of
𝑄 is approximated using a gamma distribution. Since 𝜏2M = (𝑄−𝑛+1)/(∑𝑛

𝑗=1𝑢
−2
𝑗 −∑𝑛

𝑗=1𝑢
−4
𝑗 /∑𝑛

𝑗=1𝑢
−2
𝑗 ), the distribution of 𝜏2M can be approximated using a location-

shifted, scaled gamma distribution. Thus to simulate from the approximate dis-
tribution of 𝜏2DL = max{0, 𝜏2M}, we simulate 𝜏2M from the appropriate gamma dis-
tribution and take the maximum of that simulated sample and 0.
The uncertainty evaluation via the parametric statistical bootstrap (Efron and
Tibshirani, 1993) is consistent with the gum Supplement 1 (Joint Committee for
Guides in Metrology, 2008). The raw materials for this evaluation are obtained
by repeating the following steps a large number (𝐾 ) of times, for 𝑘 = 1, . . . , 𝐾 :

(a) Draw 𝜏𝑘 from the approximate probability distribution of 𝜏DL;

(b) Draw 𝑥 𝑗𝑘 from a Gaussian distribution with mean 𝜇̂ and variance 𝜏2
𝑘
+𝑢2𝑗 , for

𝑗 = 1, . . . , 𝑛;

(c) If 𝜈 𝑗 is either in�nity or unspeci�ed, 𝑢 𝑗𝑘 = 𝑢 𝑗 , otherwise 𝑢 𝑗𝑘 = 𝑢 𝑗
√
𝜈 𝑗/𝜒2𝜈 𝑗

where 𝜒2𝜈 𝑗 denotes a value drawn from a chi-squared distribution with 𝜈 𝑗
degrees of freedom, for 𝑗 = 1, . . . , 𝑛;

(d) Compute the DerSimonian-Laird consensus value 𝜇𝑘 corresponding to the
triplets (𝑥1𝑘 , 𝑢1𝑘 , 𝜈1), . . . , (𝑥𝑛𝑘 , 𝑢𝑛𝑘 , 𝜈𝑛).
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The standard uncertainty associatedwith theDerSimonian-Laird consensus value
is the standard deviation of the {𝜇𝑘}, and one (among many alternatives) 95 %
coverage interval for 𝜇 ranges from the 2.5th to the 97.5th percentile of the {𝜇𝑘}.
Alternatively, a Bayesian treatment (§A.3) can also remedy the defect that the
conventional DerSimonian-Laird uncertainty evaluation su�ers from: not rec-
ognizing the uncertainty surrounding the estimate of 𝜏 . The Bayesian treatment
o�ers additional advantages that will become apparent in §A.3 and §A.5.

A.3 Hierarchical Bayesian

The distinctive traits of a Bayesian treatment are these: (i) all quantities whose
values are unknown are modeled as non-observable random variables; (ii) data
are modeled as observed values of random variables; (iii) estimates and uncer-
tainty evaluations for unknown values are derived from the conditional proba-
bility distribution of the unknowns given the data (the so-called posterior distri-

bution) computed by application of Bayes rule (Gelman et al., 2013).
Enacting (i) and (ii) involves specifying probability distributions for all the quan-
tities in play (unknowns as well as data), and (iii) typically involves Markov
ChainMonte Carlo sampling to produce an arbitrarily large sample from the pos-
terior distribution, standing as a proxy for its analytical characterization (which
is impracticable in most cases) (Gelman et al., 2013). The nicob uses the im-
plementation of mcmc in jags (Plummer, 2015), via R package R2jags (Su and
Yajima, 2015).
The distributions selected for the Bayesian analysis are these:

• 𝜇 has a prior Gaussian distribution with mean 0 and a very large standard
deviation (105);

• 𝜏 and the {𝜎 𝑗 } have prior half-Cauchy distributions as suggested by Gel-
man (2006) and further supported by Polson and Scott (2012). We have
chosen the default values of the medians of these prior distributions as fol-
lows: for 𝜏 , equal to the median of the absolute values of the di�erences
between the measured values and their median; and for the {𝜎 𝑗 }, equal to
the median of the {𝑢 𝑗 }. The user has the freedom to change both these
values;

• Given 𝜏 , the {𝜆 𝑗 } are Gaussian with mean 0 and standard deviation 𝜏 ;
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• Given 𝜇, {𝜆 𝑗 }, and {𝜎 𝑗 }, the measured values {𝑥 𝑗 } are modeled as outcomes
of Gaussian random variables with means {𝜇+𝜆 𝑗 } and standard deviations
{𝜎 𝑗 };

• When the standard uncertainties associated with the measured values are
based on �nitelymany numbers of degrees of freedom {𝜈 𝑗 }, then {𝜈 𝑗𝑢2𝑗 /𝜎2𝑗 }
are modeled as outcomes of chi-squared random variables with {𝜈 𝑗 } de-
grees of freedom; when they are based on in�nitely many numbers of de-
grees of freedom (that is, are regarded as known), 𝜎 𝑗 = 𝑢 𝑗 .

The estimate of the consensus value 𝜇 is the mean of the corresponding posterior
distribution, and the associated standard uncertainty 𝑢 (𝜇) is the standard devia-
tion of the same distribution. Since this distribution is not derived analytically,
and instead we base our inferences on the sample that mcmc draws from it, the
consensus value is the average of this sample, and 𝑢 (𝜇) is its standard deviation.
The nicob veri�es that the mcmc sampling process has reached equilibrium by
applying the convergence diagnostic test suggested byGeweke (1998) to the sam-
ples drawn from the distribution of all of the unknown quantities. If the nicob
concludes that equilibrium has not been reached, then it issues a message invit-
ing the user to re-run the analysis using a larger mcmc sample, with suggested
values for the new sample size, number of initial values to discard, and the sub-
sampling (thinning) rate.

A.4 Linear Pool

The Linear Pool was suggested by Stone (1961) to aggregate the opinions or states
of knowledge of several experts on a particular matter expressed as probability
distributions, thereby producing a consensus. However, Bacharach (1979) at-
tributes the idea to Pierre Simon, Marquis de Laplace.
In our case, the “experts” are the laboratories or measurement methods involved
in an inter-comparison, and their opinions or states of knowledge are expressed
in the form of probability distributions (whose means are the measured values
{𝑥 𝑗 } and whose standard deviations are the associated standard uncertainties
{𝑢 𝑗 }). The Linear Pool produces a sample from a mixture of these probability
distributions, which may then be suitably summarized to produce a consensus
value and an evaluation of the associated uncertainty.
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The distributions aforementioned are taken to be either Gaussian (when the
number of degrees of freedom is in�nite or unspeci�ed), or re-scaled and shifted
Student’s 𝑡 distributions (when the number of degrees of freedom is �nite), in
both cases with means and standard deviations as described above.
The nicob gives the user the option of specifying weights for the di�erent mea-
surement results: the default is to weigh all the results equally. The weights
represent the quality or reliability of the participating laboratories or methods,
as perceived by the person performing the aggregation. However, this does not
imply that the measured values themselves will end-up being equally weighed,
for they are also weighed according to the reported measurement uncertainties.
If {𝜙 𝑗 } denote the probability densities of the distributions assigned to the partici-
pants as described above (Gaussian or re-scaled and shifted Student’s 𝑡 ), and {𝑤 𝑗 }
denote the corresponding weights (non-negative, which the nicob normalizes to
sum to 1), then the mixture distribution has probability density 𝑓 =

∑𝑛
𝑗=1𝑤 𝑗𝜙 𝑗 ,

where 𝑛 denotes the number of participants.
The average of the sample drawn from this mixture distribution is the consen-
sus value, and its standard deviation is the corresponding standard uncertainty.
Toman (2007, Equation (20)) provides an analytical expression for this standard
uncertainty for a common implementation of the Linear Pool. Coverage inter-
vals are built by selecting suitable percentiles from this sample, for example the
2.5th and the 97.5th for a 95 % coverage interval (which generally need not be
centered at the consensus value).
The Linear Pool is but one of several ways in which the opinions of multiple
experts, expressed as probability distributions, may be merged into a consensus
distribution. Clemen and Winkler (2007) review some of the alternatives, and
detail and compare the underlying assumptions and their properties.
The consensus distribution obtained by the Linear Poolmay bemultimodal (mean-
ing that the mixture density 𝑓 mentioned above may have multiple peaks): in
such cases its mean and standard deviation may be poor indications of its typical
value and spread (for example, as illustrated in Exhibit 27 on Page 60). To fa-
cilitate a critical evaluation of the �tness-for-purpose of the mean and standard
deviation of the distribution, the nicob also depicts 𝑓 graphically.
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A.5 Degrees of Equivalence

The nicob follows guidance from Jones and Spiegelhalter (2011) about how to
identify participants with “unusual” results in an interlaboratory study, in the
sense that their measured values lie “beyond the range allowed by the model”,
and implements their Approach 2 to Identify Outliers to the Random E�ects Dis-

tribution. Since the mra does not specify how the expanded uncertainties that
are part of the degrees of equivalence ought to be computed, not only is our
choice consistent with the mra, it also re�ects the state-of-the-art while uphold-
ing a measure of circumspection that we believe to be appropriate when �agging
results as “unusual.”
The perspective in this endeavor is one of testing, rather than of estimation: for
the unilateral DoE, the goal is to identify measured values that, as Jones and
Spiegelhalter (2011) put it, “lie beyond the range allowed by the model”, and that
e�ectively are outliers relative to the random e�ects distribution. Both Bayesian
and sampling-theoretic approaches lead to the same criterion to identify signi�-
cant discrepancies.
In §3.2.8 we introduced an alternative computation of the unilateral DoE for lab-
oratory 𝑗 as 𝐷∗

𝑗 = 𝑥 𝑗 − 𝜇̂− 𝑗 , where 𝜇̂− 𝑗 denotes an estimate of the consensus
value derived from the measurement results produced by all the participants but
leaving-out the results from participant 𝑗 , for 𝑗 = 1, . . . , 𝑛.
We also noted that Viechtbauer and Cheung (2010) and Duewer et al. (2014),
possibly among others, have used this idea previously. The nicob o�ers the user
the possibility of computing DoEs using the conventional version, as de�ned
in the mra, or according to the leave-one-out strategy just described, both for
unilateral and bilateral DoEs corresponding to the three procedures available.

A.5.1 DerSimonian-Laird

For the DerSimonian-Laird procedure, the conventional version of the unilateral
DoE is 𝐷 𝑗 = 𝑥 𝑗 − 𝜇̂ and the bilateral DoE is 𝐵𝑖 𝑗 = 𝐷𝑖 − 𝐷 𝑗 for 𝑖, 𝑗 = 1, . . . , 𝑛. Both
the {𝑈95 %(𝐷 𝑗 )} and the {𝑈95 %(𝐵𝑖 𝑗 )} are evaluated using the parametric statistical
bootstrap, from raw materials computed by repeating the following steps a large
number 𝐾 of times, for 𝑘 = 1, . . . , 𝐾 :

(a) Draw 𝜏𝑘 from the approximate sampling distribution of 𝜏DL described in §A.2;
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(b) Draw 𝑥 𝑗,𝑘 from a Gaussian distribution with mean 𝜇̂ and variance 𝜏2
𝑘
+𝑢2𝑗 , for

𝑗 = 1, . . . , 𝑛;

(c) If 𝜈 𝑗 is either in�nity or unspeci�ed, 𝑢 𝑗,𝑘 = 𝑢 𝑗 , otherwise 𝑢 𝑗,𝑘 = 𝑢 𝑗
√
𝜈 𝑗/𝜒2𝜈 𝑗

where 𝜒2𝜈 𝑗 denotes a value drawn from a chi-squared distribution with 𝜈 𝑗
degrees of freedom, for 𝑗 = 1, . . . , 𝑛;

(d) Compute the DerSimonian-Laird consensus value 𝜇𝑘 corresponding to the
triplets (𝑥1𝑘 , 𝑢1𝑘 , 𝜈1), . . . , (𝑥𝑛𝑘 , 𝑢𝑛𝑘 , 𝜈𝑛);

(e) Compute 𝐷 𝑗,𝑘 = 𝑥 𝑗,𝑘 − 𝜇𝑘 , for 𝑗 = 1, . . . , 𝑛.

Compute 𝑈95 %(𝐷 𝑗 ) as one half of the length of the shortest interval centered at
the average of 𝐷 𝑗,1, . . . , 𝐷 𝑗,𝐾 and that includes 95 % of these {𝐷 𝑗,𝑘}. The value of
𝑈95 %(𝐵𝑖 𝑗 ) is computed similarly, based on 𝐵𝑖 𝑗,𝑘 = 𝐷𝑖,𝑘 − 𝐷 𝑗,𝑘 for 𝑖, 𝑗 = 1, . . . , 𝑛.
For the leave-one-out version,𝐷∗

𝑗 = 𝑥 𝑗− 𝜇̂− 𝑗 and the bilateral DoE is 𝐵∗𝑖 𝑗 = 𝐷∗
𝑖 −𝐷∗

𝑗

for 𝑖, 𝑗 = 1, . . . , 𝑛. Instead of performing a parametric bootstrap evaluation of
𝑢 (𝜇̂− 𝑗 ), we simply draw K samples from the Student’s 𝑡 approximation suggested
by Knapp and Hartung (2003). The deviations that are used for the evaluation of
the expanded uncertainty associatedwith𝐷∗

𝑗 are of the form𝐷∗
𝑗,𝑘

= 𝑥 𝑗+𝑒 𝑗,𝑘−𝜇− 𝑗,𝑘 ,
where 𝑒 𝑗,𝑘 is an outcome of either a Student’s 𝑡 or a Gaussian distribution with
mean 0 and variance 𝜏2− 𝑗,𝑘 +𝑢

2
𝑗 (depending on whether degrees of freedom have,

or have not been speci�ed as inputs to the nicob), and 𝜏2− 𝑗,𝑘 is drawn from the
approximate distribution mentioned in §A.2.

A.5.2 Hierarchical Bayesian

The Bayesian approach that Jones and Spiegelhalter (2011) describe is based on
the posterior predictive distribution for measured values, whose probability den-
sity is 𝑔 such that
𝑔(𝜉 𝑗 |𝑥1, . . . , 𝑥𝑛) =

∭
𝜙 (𝜉 𝑗 |𝜇, 𝜏2 + 𝜎2𝑗 ) 𝑞(𝜇, 𝜏, 𝜎 𝑗 |𝑥1, 𝑢1, 𝜈1, . . . , 𝑥𝑛, 𝑢𝑛, 𝜈𝑛) d𝜇 d𝜏 d𝜎 𝑗 ,

where 𝜉 𝑗 denotes a prediction for a value that laboratory 𝑗 maymeasure,𝜙 (·|𝜇, 𝜏2+
𝜎2𝑗 ) denotes the probability density of a Gaussian distribution with mean 𝜇 and
variance 𝜏2 + 𝜎2𝑗 , and 𝑞 denotes the probability density of the joint posterior dis-
tribution of 𝜇, 𝜏 , and 𝜎 𝑗 given the measurement results.
The unilateral degree of equivalence for laboratory 𝑗 = 1, . . . , 𝑛 comprises 𝐷 𝑗 =

𝑥 𝑗 − 𝜇̂, where 𝜇̂ denotes the average of an mcmc sample drawn from the poste-
rior distribution of 𝜇, and𝑈95 %(𝐷 𝑗 ), which is derived from a sample 𝜉 𝑗,1, . . . , 𝜉 𝑗,𝐾
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drawn from the aforementioned predictive distribution by repeating the follow-
ing steps a large number (𝐾 ) of times, for 𝑘 = 1, . . . , 𝐾 :

(a) Draw 𝜇𝑘 , 𝜏𝑘 , and𝜎 𝑗,𝑘 from the corresponding posterior distributions via mcmc
sampling;

(b) Draw 𝜉 𝑗,𝑘 from a Gaussian distribution with mean 𝜇𝑘 and variance 𝜏2
𝑘
+ 𝜎2

𝑗,𝑘
;

(c) Compute 𝐷 𝑗,𝑘 = 𝑥 𝑗 − 𝜉 𝑗,𝑘 .

The value of 𝑈95 %(𝐷 𝑗 ) is one half of the length of the shortest interval that is
symmetrical around the average of the {𝐷 𝑗,𝑘} and includes 95 % of them.
Under the leave-one-out approach, we leave out the results from participant 𝑗 ,
for 𝑗 = 1, . . . , 𝑛. This means there is no posterior distribution for 𝜎 𝑗 , so in the
leave-one-out versions of the unilateral and bilateral DoE we modify the algo-
rithm. For 𝑘 in 1, . . . , 𝐾 , 𝜇− 𝑗,𝑘 and 𝜏− 𝑗,𝑘 are drawn from the corresponding poste-
rior distributions, via mcmc sampling. Similar to the DerSimonian-Laird proce-
dure, 𝐷∗

𝑗,𝑘
= 𝑥 𝑗 + 𝑒 𝑗,𝑘 − 𝜇− 𝑗,𝑘 where 𝑒 𝑗,𝑘 are drawn from either a Student’s 𝑡 or a

Gaussian distribution, depending on whether the degrees of freedom have been
speci�ed, with mean 0 and variance 𝜏2− 𝑗,𝑘 + 𝑢

2
𝑗 .

A.5.3 Linear Pool

For the Linear Pool procedure, the conventional version of the unilateral DoE
is 𝐷 𝑗 = 𝑥 𝑗 − 𝜇̂, where 𝜇̂ is the mean of the sample drawn from the mixture
distribution, described in Section A.4. Again, the bilateral DoE is 𝐵𝑖 𝑗 = 𝐷𝑖 − 𝐷 𝑗

for 𝑖, 𝑗 = 1, . . . , 𝑛. The {𝑈95 %(𝐷 𝑗 )} and {𝑈95 %(𝐵𝑖 𝑗 )} are evaluated using 𝐷 𝑗,𝑘 =

𝑥 𝑗 +𝑒 𝑗,𝑘 − 𝜇̂, where 𝑒 𝑗,𝑘 is drawn from a Student’s 𝑡 (or Gaussian) distribution with
mean 0 and variance 𝑢2𝑗 .
For the leave-one-out version, let {𝑥− 𝑗,𝑘} for 𝑘 = 1, . . . , 𝐾 denote the sample of
size 𝐾 produced when the Linear Pool is applied to all the measurements ex-
cluding those from laboratory 𝑗 for each 𝑗 = 1, . . . , 𝑛, and de�ne 𝜇̂− 𝑗 as their
average. The unilateral DoE have 𝐷∗

𝑗 = 𝑥 𝑗 − 𝜇̂− 𝑗 , and the bilateral DoE have
𝐵∗𝑖 𝑗 = 𝐷

∗
𝑖 − 𝐷∗

𝑗 for 𝑖, 𝑗 = 1, . . . , 𝑛. The {𝑈95 %(𝐷∗
𝑗 )} and {𝑈95 %(𝐵∗𝑖 𝑗 )} are computed

similarly to how they are evaluated in the other two leave-one-out procedures,
based on {𝐷∗

𝑗,𝑘
} and {𝐵∗

𝑖 𝑗,𝑘
} such that 𝐷∗

𝑗,𝑘
= 𝑥 𝑗 +𝑒 𝑗,𝑘 −𝑥− 𝑗,𝑘 and 𝐵∗𝑖 𝑗,𝑘 = 𝐷

∗
𝑖,𝑘
−𝐷∗

𝑗,𝑘
.

Here 𝑒 𝑗,𝑘 are drawn from either a Student’s 𝑡 or a Gaussian distribution, depend-
ing on whether the degrees of freedom have been speci�ed, with mean 0 and
variance 𝑢2𝑗 .
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